Vol. 143

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-10-29

Propagation of a Lorentz-Gauss Vortex Beam in a Turbulent Atmosphere

By Guoquan Zhou and Guoyun Ru
Progress In Electromagnetics Research, Vol. 143, 143-163, 2013
doi:10.2528/PIER13082703

Abstract

The propagation properties of a Lorentz-Gauss vortex beam in a turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, the Hermite-Gaussian expansion of a Lorentz function, etc., analytical expressions of the average intensity, effective beam size, and kurtosis parameter of a Lorentz-Gauss vortex beam are derived in the turbulent atmosphere. The spreading properties of a Lorentz-Gauss vortex beam in the turbulent atmosphere are numerically calculated and analyzed. The influences of the beam parameters on the propagation of a Lorentz-Gauss vortex beam in the turbulent atmosphere are examined in details. Upon propagation in the turbulent atmosphere, the vale in the normalized intensity distribution of a Lorentz-Gauss vortex beam gradually rises. The rising speed of the vale is opposite to the spreading of the beam spot. When the propagation distance reaches to a certain value, the Lorentz-Gauss vortex beam in the turbulent atmosphere becomes a flattened beam spot. When the propagation distance is large enough, the beam spot of the Lorentz-Gauss vortex beam tends to be a Gaussian-like distribution. This research is beneficial to optical communications and remote sensing that are involved in the single mode diode laser devices.

Citation


Guoquan Zhou and Guoyun Ru, "Propagation of a Lorentz-Gauss Vortex Beam in a Turbulent Atmosphere," Progress In Electromagnetics Research, Vol. 143, 143-163, 2013.
doi:10.2528/PIER13082703
http://www.jpier.org/PIER/pier.php?paper=13082703

References


    1. Naqwi, A. and F. Durst, "Focus of diode laser beams: A simple mathematical model," Appl. Opt., Vol. 29, 1780-1785, 1990.
    doi:10.1364/AO.29.001780

    2. Yang, J., T. Chen, G. Ding, and X. Yuan, "Focusing of diode laser beams: A partially coherent Lorentz model," Proc. SPIE , Vol. 6824, 68240A, 2008.
    doi:10.1117/12.757962

    3. Torre, A., W. A. B. Evans, O. E. Gawhary, and S. Severini, "Relativistic Hermite polynomials and Lorentz beams," J. Opt. A: Pure Appl. Opt., Vol. 10, 115007, 2008.
    doi:10.1088/1464-4258/10/11/115007

    4. Gao, X., D. Zhang, M. Ting, F. Rui, Q. Zhan, and S. Zhuang, "Focus shaping of linearly polarized Lorentz beam with sine-azimuthal variation wavefront," Optik, Vol. 124, 2079-2084, 2013.
    doi:10.1016/j.ijleo.2012.06.061

    5. Gawhary, O. E. and S. Severini, "Lorentz beams as a basis for a new class of rectangular symmetric optical fields," Opt. Commun., Vol. 269, 274-284, 2007.
    doi:10.1016/j.optcom.2006.08.007

    6. Chen, R. and C. H. R. Ooi, "Evolution and collapse of a Lorentz beam in Kerr medium," Progress In Electromagnetics Research, Vol. 121, 39-52, 2011.
    doi:10.2528/PIER11081712

    7. Zhou, G., "Beam propagation factors of a Lorentz-Gauss beam," Appl. Phys. B, Vol. 96, 149-153, 2009.
    doi:10.1007/s00340-009-3460-9

    8. Zhou, G. and R. Chen, "Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system," Appl. Phys. B, Vol. 107, 183-193, 2012.
    doi:10.1007/s00340-012-4889-9

    9. Gawhary, O. E. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," J. Opt. A: Pure Appl. Opt., Vol. 8, 409-414, 2006.
    doi:10.1088/1464-4258/8/5/007

    10. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis," J. Mod. Opt., Vol. 57, 375-384, 2010.
    doi:10.1080/09500341003640079

    11. Du, W., C. Zhao, and Y. Cai, "Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system," Opt. Lasers in Eng., Vol. 49, 25-31, 2011.
    doi:10.1016/j.optlaseng.2010.09.004

    12. Sun, Q., A. Li, K. Zhou, Z. Liu, G. Fang, and S. Liu, "Virtual source for rotational symmetric Lorentz-Gaussian beam," Chin. Opt. Lett., Vol. 10, 062601, 2012.
    doi:10.3788/COL201210.062601

    13. Jiang, Y., K. Huang, and X. Lu, "Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle," Opt. Express , Vol. 19, 9708-9713, 2011.
    doi:10.1364/OE.19.009708

    14. Eyyubo·glu, H. T., "Partially coherent Lorentz-Gaussian beam and its scintillations," Appl. Phys. B, Vol. 103, 755-762, 2011.
    doi:10.1007/s00340-011-4414-6

    15. Beth, R. A., "Mechanical detection and measurement of the angular momentum of light," Phy. Rev., Vol. 50, 115-125, 1936.
    doi:10.1103/PhysRev.50.115

    16. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phy. Rev. A, Vol. 45, 8185-8189, 1992.
    doi:10.1103/PhysRevA.45.8185

    17. He, H., M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett., Vol. 75, 826-829, 1995.
    doi:10.1103/PhysRevLett.75.826

    18. Curtis, J. E., B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun., Vol. 207, 169-175, 2002.
    doi:10.1016/S0030-4018(02)01524-9

    19. Gibson, G., J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express, Vol. 12, 5448-5456, 2004.
    doi:10.1364/OPEX.12.005448

    20. Lee, W. M., X.-C. Yuan, and W. C. Cheong, "Optical vortex beam shaping by use of highly e±cient irregular spiral phase plates for optical micromanipulation," Opt. Lett., Vol. 29, 1796-1798, 2004.
    doi:10.1364/OL.29.001796

    21. Paterson, C., "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett., Vol. 94, 153901, 2005.
    doi:10.1103/PhysRevLett.94.153901

    22. Li, C. F., "Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization," Phys. Rev. A, Vol. 80, 063814, 2009.

    23. Bliokh, K. Y., M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, "Angular momentum and spin-orbit interaction of nonparaxial light in free space," Phys. Rev. A, Vol. 82, 063825, 2010.

    24. Ni, Y. and G. Zhou, "Nonparaxial propagation of Lorentz-Gauss vortex beams in uniaxial crystals orthogonal to the optical axis," Appl. Phys. B, Vol. 108, 883-890, 2012.
    doi:10.1007/s00340-012-5118-2

    25. Rui, F., D. Zhang, M. Ting, X. Gao, and S. Zhuang, "Focusing of linearly polarize Loretnz-Gauss beam with bone optical vortex," Optik, Vol. 124, 2969-2973, 2973.