The propagation properties of a Lorentz-Gauss vortex beam in a turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, the Hermite-Gaussian expansion of a Lorentz function, etc., analytical expressions of the average intensity, effective beam size, and kurtosis parameter of a Lorentz-Gauss vortex beam are derived in the turbulent atmosphere. The spreading properties of a Lorentz-Gauss vortex beam in the turbulent atmosphere are numerically calculated and analyzed. The influences of the beam parameters on the propagation of a Lorentz-Gauss vortex beam in the turbulent atmosphere are examined in details. Upon propagation in the turbulent atmosphere, the vale in the normalized intensity distribution of a Lorentz-Gauss vortex beam gradually rises. The rising speed of the vale is opposite to the spreading of the beam spot. When the propagation distance reaches to a certain value, the Lorentz-Gauss vortex beam in the turbulent atmosphere becomes a flattened beam spot. When the propagation distance is large enough, the beam spot of the Lorentz-Gauss vortex beam tends to be a Gaussian-like distribution. This research is beneficial to optical communications and remote sensing that are involved in the single mode diode laser devices.
2. Yang, J., T. Chen, G. Ding, and X. Yuan, "Focusing of diode laser beams: A partially coherent Lorentz model," Proc. SPIE , Vol. 6824, 68240A, 2008.
doi:10.1117/12.757962
3. Torre, A., W. A. B. Evans, O. E. Gawhary, and S. Severini, "Relativistic Hermite polynomials and Lorentz beams," J. Opt. A: Pure Appl. Opt., Vol. 10, 115007, 2008.
doi:10.1088/1464-4258/10/11/115007
4. Gao, X., D. Zhang, M. Ting, F. Rui, Q. Zhan, and S. Zhuang, "Focus shaping of linearly polarized Lorentz beam with sine-azimuthal variation wavefront," Optik, Vol. 124, 2079-2084, 2013.
doi:10.1016/j.ijleo.2012.06.061
5. Gawhary, O. E. and S. Severini, "Lorentz beams as a basis for a new class of rectangular symmetric optical fields," Opt. Commun., Vol. 269, 274-284, 2007.
doi:10.1016/j.optcom.2006.08.007
6. Chen, R. and C. H. R. Ooi, "Evolution and collapse of a Lorentz beam in Kerr medium," Progress In Electromagnetics Research, Vol. 121, 39-52, 2011.
doi:10.2528/PIER11081712
7. Zhou, G., "Beam propagation factors of a Lorentz-Gauss beam," Appl. Phys. B, Vol. 96, 149-153, 2009.
doi:10.1007/s00340-009-3460-9
8. Zhou, G. and R. Chen, "Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system," Appl. Phys. B, Vol. 107, 183-193, 2012.
doi:10.1007/s00340-012-4889-9
9. Gawhary, O. E. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," J. Opt. A: Pure Appl. Opt., Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007
10. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis," J. Mod. Opt., Vol. 57, 375-384, 2010.
doi:10.1080/09500341003640079
11. Du, W., C. Zhao, and Y. Cai, "Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system," Opt. Lasers in Eng., Vol. 49, 25-31, 2011.
doi:10.1016/j.optlaseng.2010.09.004
12. Sun, Q., A. Li, K. Zhou, Z. Liu, G. Fang, and S. Liu, "Virtual source for rotational symmetric Lorentz-Gaussian beam," Chin. Opt. Lett., Vol. 10, 062601, 2012.
doi:10.3788/COL201210.062601
13. Jiang, Y., K. Huang, and X. Lu, "Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle," Opt. Express , Vol. 19, 9708-9713, 2011.
doi:10.1364/OE.19.009708
14. Eyyubo·glu, H. T., "Partially coherent Lorentz-Gaussian beam and its scintillations," Appl. Phys. B, Vol. 103, 755-762, 2011.
doi:10.1007/s00340-011-4414-6
15. Beth, R. A., "Mechanical detection and measurement of the angular momentum of light," Phy. Rev., Vol. 50, 115-125, 1936.
doi:10.1103/PhysRev.50.115
16. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phy. Rev. A, Vol. 45, 8185-8189, 1992.
doi:10.1103/PhysRevA.45.8185
17. He, H., M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett., Vol. 75, 826-829, 1995.
doi:10.1103/PhysRevLett.75.826
18. Curtis, J. E., B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun., Vol. 207, 169-175, 2002.
doi:10.1016/S0030-4018(02)01524-9
19. Gibson, G., J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express, Vol. 12, 5448-5456, 2004.
doi:10.1364/OPEX.12.005448
20. Lee, W. M., X.-C. Yuan, and W. C. Cheong, "Optical vortex beam shaping by use of highly e±cient irregular spiral phase plates for optical micromanipulation," Opt. Lett., Vol. 29, 1796-1798, 2004.
doi:10.1364/OL.29.001796
21. Paterson, C., "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett., Vol. 94, 153901, 2005.
doi:10.1103/PhysRevLett.94.153901
22. Li, C. F., "Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization," Phys. Rev. A, Vol. 80, 063814, 2009.
23. Bliokh, K. Y., M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, "Angular momentum and spin-orbit interaction of nonparaxial light in free space," Phys. Rev. A, Vol. 82, 063825, 2010.
24. Ni, Y. and G. Zhou, "Nonparaxial propagation of Lorentz-Gauss vortex beams in uniaxial crystals orthogonal to the optical axis," Appl. Phys. B, Vol. 108, 883-890, 2012.
doi:10.1007/s00340-012-5118-2
25. Rui, F., D. Zhang, M. Ting, X. Gao, and S. Zhuang, "Focusing of linearly polarize Loretnz-Gauss beam with bone optical vortex," Optik, Vol. 124, 2969-2973, 2973.