PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 143 > pp. 349-368

ENHANCED DESIGN OF NARROWBAND FILTERS BASED ON THE EXTRAORDINARY TRANSMISSION THROUGH SINGLE FISHNET STRUCTURES

By N. S. Nye, A. I. Dimitriadis, N. V. Kantartzis, and T. D. Tsiboukis

Full Article PDF (734 KB)

Abstract:
A systematic method for the efficient design of narrowband filters founded on the extraordinary transmission via single fishnet structures (SFSs) is presented in this paper.~Essentially, due to its strong resonant behavior, this phenomenon is proven suitable for the implementation of high-$Q$ devices.~The new design formulas are derived through the combination of full-wave numerical simulations and curve fitting algorithms. Also, adequate mathematical criteria are defined for the evaluation of the filters' linear performance, indicating that the transmitted electromagnetic waves remain practically undistorted in the frequency band of interest. Then, by exploiting the previously developed relations, proper correction factors are introduced in the existing SFS equivalent circuit expressions, which hardly increase the overall computational complexity. This quantitative modification leads to an enhanced characterization of SFSs, as key components for diverse applications. Finally, several limitations as well as possible ways of extending the featured algorithm to more complicated structures and higher frequency bands are briefly discussed.

Citation:
N. S. Nye, A. I. Dimitriadis, N. V. Kantartzis, and T. D. Tsiboukis, "Enhanced Design of Narrowband Filters Based on the Extraordinary Transmission through Single Fishnet Structures," Progress In Electromagnetics Research, Vol. 143, 349-368, 2013.
doi:10.2528/PIER13100205
http://www.jpier.org/PIER/pier.php?paper=13100205

References:
1. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 1-4, 2005.

2. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, No. 18, 11536-11541, 2007.
doi:10.1364/OE.15.011536

3. Navarro-Cia, M., M. Beruete, F. Falcone, M. Sorolla Ayza, and I. Campillo, "Polarization-tunable negative/positive refraction in self-complementariness-based extraordinary transmission prism ," Progress In Electromagnetics Research, Vol. 103, 101-114, 2010.
doi:10.2528/PIER10030108

4. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.

5. Guo, J., Y. Xiang, X. Dai, and S. Wen, "Enhanced nonlinearities in double-fishnet negative-index photonic metamaterials," Progress In Electromagnetics Research, Vol. 136, 269-282, 2013.

6. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces --- A review," Proc. IEEE, Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352

7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.
doi:10.1002/0471723770

8. Navarro-Cia, M., M. Beruete, F. Falcone, J. Illescas, I. Campillo, and M. Sorolla Ayza, "Mastering the propagation through stacked perforated plates: Subwavelength holes vs. propagating holes," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2980-2988, 2011.
doi:10.1109/TAP.2011.2158957

9. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7--8, 163-182, 1944.
doi:10.1103/PhysRev.66.163

10. bbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

11. Song, J. F. and R. Proietti Zaccaria, "Manipulation of light transmission through sub-wavelength hole array," J. Opt. A: Pure Appl. Opt., Vol. 9, No. 9, S450-S457, 2007.
doi:10.1088/1464-4258/9/9/S28

12. Ren, X. F., G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, "Remote control of extraordinary transmission through subwavelength hole arrays," Europhys. Lett., Vol. 84, No. 3, 1-4, 2008.
doi:10.1209/0295-5075/84/30005

13. Ghaemi, H. F., T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes ," Phys. Rev. B, Vol. 58, No. 11, 6779-6782, 1998.
doi:10.1103/PhysRevB.58.6779

14. Vallius, T., J. Turunen, M. Mansuripur, and S. Honkanen, "Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons," J. Opt. Soc. Am. A, Vol. 21, No. 3, 456-463, 2004.
doi:10.1364/JOSAA.21.000456

15. Lalanne, P., J. C. Rodier, and J. P. Hugonin, "Surface plasmons of metallic surfaces perforated by nanohole arrays," J. Opt. A: Pure Appl. Opt., Vol. 7, No. 8, 422-426, 2005.
doi:10.1088/1464-4258/7/8/013

16. Kong, F., K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries ," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

17. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. MartIn-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett., Vol. 29, No. 21, 2500-2502, 2004.
doi:10.1364/OL.29.002500

18. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays ," Phys. Rev. Lett., Vol. 86, No. 6, 1114-1117, 2001.
doi:10.1103/PhysRevLett.86.1114

19. Garcia de Abajo, F. J., R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays ," Phys. Rev. E, Vol. 72, No. 1, 1-4, 2005.
doi:10.1103/PhysRevE.72.016608

20. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

21. Rudnitsky, A. S. and V. M. Serdyuk, "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of finite thickness placed in front of a half-infinite dielectric," Progress In Electromagnetics Research, Vol. 86, 277-290, 2008.
doi:10.2528/PIER08092605

22. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

23. Pendry, J. B., L. MartIn-Moreno, and F. J. GarcIa-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999

24. Quevedo-Teruel, O., "Controlled radiation from dielectric slabs over spoof surface plasmon waveguides," Progress In Electromagnetics Research, Vol. 140, 169-179, 2013.

25. Medina, F., F. Mesa, and R. Marques, "Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective ," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3108-3120, 2008.
doi:10.1109/TMTT.2008.2007343

26. Marques, R, F. Mesa, L. Jelinek, and F. Medina, "Analytical theory of extraordinary transmission through metallic diffraction screens perforated by small holes," Opt. Express, Vol. 17, No. 7, 5571-5579, 2009.
doi:10.1364/OE.17.005571

27. Marques, , R., L. Jelinek, F. Mesa, and F. Medina, "Analytical theory of wave propagation through stacked fishnet metamaterials," Opt. Express, Vol. 17, No. 14, 11582-11593, 2009.
doi:10.1364/OE.17.011582

28. Beruete, M., M. Navarro-Cia, and M. Sorolla Ayza, "Understand-ing anomalous extraordinary transmission from equivalent circuit and grounded slab concepts," IEEE Trans. on Microw. Theory and Tech., Vol. 59, No. 9, 2180-2188, 2011.
doi:10.1109/TMTT.2011.2160076

29. Medina, F., J. A. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marques, "Experimental verification of extraordinary transmission without surface plasmons," Appl. Phys. Lett., Vol. 95, No. 7, 1-3, 2009.
doi:10.1063/1.3206738

30. Garcia de Abajo, F. J., "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys., Vol. 79, No. 4, 1267-1290, 2007.
doi:10.1103/RevModPhys.79.1267

31. Engheta, N., A. Salandrino, and A. Alu, "Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors ," Phys. Rev. Lett., Vol. 95, No. 9, 1-4, 2005.

32. Huang, C. P., X. G. Yin, H. Huang, and Y. Y. Zhu, "Study of plasmon resonance in a gold nanorod with an LC circuit model," Opt. Express, Vol. 17, No. 8, 6407-6413, 2009.
doi:10.1364/OE.17.006407


© Copyright 2014 EMW Publishing. All Rights Reserved