PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 144 > pp. 151-169

THE WAVELENGTH DIVISION MULTIPLEXER REALIZED IN THREE-DIMENSIONAL UNUSUAL SURFACE-PLASMON-INDUCED PHOTONIC CRYSTALS COMPOSED OF THE EPSILON-NEGATIVE MATERIALS SHELLS

By H. F. Zhang, S. Liu, and H.-M. Li

Full Article PDF (855 KB)

Abstract:
In this paper, the dispersive properties and switching state of three-dimensional (3D) photonic crystals (PCs) with diamond lattices, which are composed of the core isotropic dielectric spheres with surrounded by the epsilon-negative (ENG) materials shells inserted in the isotropic dielectric background (air), are theoretically investigated in detail based on a modified plane wave expansion method. The wavelength division multiplexer can be realized easily by tuning the switching state of such PCs. The equations for computing band structures for such 3D PCs are presented. Our analysis shows that the proposed double-shell structures can obtain the complete photonic band gaps (PBGs) which can be realized optical switching with on or off states by manipulating the radius of core dielectric sphere, the relative dielectric constant of background, the dielectric constant of ENG materials and the electronic plasma frequency, respectively. However, the thickness of the ENG materials shell cannot change the switching state as the radius of core dielectric sphere is certain. Numerical simulations also show that a flatbands region, and the stop band gaps (SBGs) in (1 0 0) and (1 1 1) directions which are above the flatbands region can be achieved. The SBGs in (1 0 0) and (1 1 1) directions can also be tuned by the parameters as mentioned above. There also exists a threshold value for the thickness of ENG material shell, which can make the band structures for the 3D PCs with double-shell structures similar to those obtained from the same structure containing the pure ENG materials spheres. In this case, the dielectric function of inserted core sphere will not affect the band structures. It means that we can achieve the PBGs by replacing the pure ENG materials spheres with such double-shell structures to make fabricate easily and save the material in the realization. It is also noticed that the flatband region is determined by the existence of surface plasmon modes, and the upper edge of flatband region does not depend on the topology of lattice. Such presented 3D PCs with double-shell structures offer a novel way to realize the wavelength division multiplexers.

Citation:
H. F. Zhang, S. Liu, and H.-M. Li, "The Wavelength Division Multiplexer Realized in Three-Dimensional Unusual Surface-Plasmon-Induced Photonic Crystals Composed of the Epsilon-Negative Materials Shells," Progress In Electromagnetics Research, Vol. 144, 151-169, 2014.
doi:10.2528/PIER13110101
http://www.jpier.org/PIER/pier.php?paper=13110101

References:
1. Yablonovitch, E., "Inhibited spontaneous emission of photons in solidstate physics and electronies," Phys. Rev. Lett., Vol. 58, 2059-2061, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

4. Du, G. Q., H. T. Jiang, Z. S. Wang, and H. Chen, "Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals," Opt. Lett., Vol. 34, No. 5, 578580, 2009.
doi:10.1364/OL.34.000578

5. Liu, Q., Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, "All-optical half adder based on cross structures in two-dimensional photonic crystals," Opt. Exp., Vol. 16, No. 23, 18992-19000, 2008.
doi:10.1364/OE.16.018992

6. Zhang, H. F., M. Li, and S. B. Liu, "Defect mode properties of magnetized plasma photonic crystals," Acta Phys. Sin., Vol. 58, No. 2, 1071-1076, 2009.

7. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals," Solid State Commun., Vol. 152, 2113-2119, 2012.
doi:10.1016/j.ssc.2012.09.009

8. Fan, S. H., S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, "Waveguide branches in photonic crystals," J. Opt. Soc. Am. B, Vol. 18, 162-165, 2001.
doi:10.1364/JOSAB.18.000162

9. Kockaert, P., P. Tassin, I. Veretennicoff, G. V. der Sande, and M. Tlidi, "Beyond the zero-diffraction regime in optical cavities with a left-handed material," J. Opt. Soc. Am. B, Vol. 26, No. 12, B148-B155, 2009.
doi:10.1364/JOSAB.26.00B148

10. Wang, L., H. Chen, and S. Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Phys. Rev. B, Vol. 70, 245102, 2004.
doi:10.1103/PhysRevB.70.245102

11. Chen, Y., "Broadband one-dimensional photonic crystals wave plate containing single-negative materials," Opt. Exp., Vol. 18, No. 19, 19920-19929, 2010.
doi:10.1364/OE.18.019920

12. Veselago, V. G., "The electrodynamics of substance with simultaneously negative values of and ," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

14. Pendry, J. B., "Negative refraction makes a perfect len," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

15. Morits, D. and C. R. Simovski, "Electromagnetic characterization of planar and bulk metamaterials: A theoretical study," Phys. Rev. B, Vol. 82, No. 16, 165114, 2010.
doi:10.1103/PhysRevB.82.165114

16. Smith, D. R., S. Schultz, P. Marko, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffcients,", Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

17. Liu , X. and A. Alu, "Homogenization of quasiisotropic metamaterials composed by dense arrays of magnetodielectric spheres," Metamaterials, Vol. 5, No. 2--3, 56-63, 2011.
doi:10.1016/j.metmat.2011.04.001

18. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a meta¯lm: With an application to a controllable surface composed of resonant particles ," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 865-865, 2005.

19. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Scher, and J. Baker-Jarvis, "Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2226-2240, 2011.
doi:10.1109/TAP.2011.2143679

20. Dimitriadis, A. I., D. L. Sounas, N. V. Kantartzis, C. Caloz, and T. D. Tsiboukis, "Surface susceptibility bianisotropic matrix model for periodic metasurfaces of uniaxially mono-anisotropic scatterers under oblique TE-wave incidence," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5753-5767, 2012.
doi:10.1109/TAP.2012.2211553

21. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Exp., Vol. 16, No. 22, 18131-18144, 2008.
doi:10.1364/OE.16.018131

22. Sounas, D. L., Focusing efficiency analysis and performance, "Focusing efficiency analysis and performance optimization of arbitrarily-sized DNG metamaterial slabs with losses," IEEE Trans. Microwave Theory Techn., Vol. 54, No. 12, 4111-4121, 2006.
doi:10.1109/TMTT.2006.885564

23. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Physics Plasma, Vol. 19, 022103, 2012.
doi:10.1063/1.3680628

24. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals ," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.
doi:10.2528/PIERB12040406

25. Kamp, M., T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, "Semiconductor photonic crystals for optoelectronics," Phys. E, Vol. 21, No. 2--4, 802-808, 2004.
doi:10.1016/j.physe.2003.11.122


© Copyright 2014 EMW Publishing. All Rights Reserved