Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 144 > pp. 201-219


By A. S. Komarov, L. Shafai, and D. G. Barber

Full Article PDF (507 KB)

In this study a new analytical formulation for electromagnetic wave scattering from rough boundaries interfacing inhomogeneous media is presented based on the first-order approximation of the small perturbation method. First, we considered a scattering problem for a single rough boundary embedded in a piecewise continuously layered medium. As a key step, we introduced auxiliary wave propagation problems that are aimed to link reflection and transmission coefficients in the layered media with particular solutions of one-dimensional wave equations at the mean level of the rough interface. This approach enabled us to express the final solution in a closed form avoiding a prior discretization of the inhomogeneous medium. Second, we naturally extended the obtained solution to an arbitrary number of rough interfaces separating continuously layered media. As a validation step, we demonstrated that available solutions in the literature represent special cases of our general solution. Furthermore, we showed that our numerical results agree well with published data. Finally, as a particular special case, we presented a formulation for scattering from inhomogeneous snow-covered sea ice when the dominant scattering occurs at the snow-ice and air-snow interfaces.

A. S. Komarov, L. Shafai, and D. G. Barber, "Electromagnetic Wave Scattering from Rough Boundaries Interfacing Inhomogeneous Media and Application to Snow-Covered Sea Ice," Progress In Electromagnetics Research, Vol. 144, 201-219, 2014.

1. Comiso, J., C. Parkinson, R. Gersten, and L. Stock, "Accelerated decline in the Arctic sea ice cover," Geophys. Res. Lett., Vol. 35, L01703, 2008.

2. Kwok, R. and D. Rothrock, "Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008," Geophys. Res. Lett., Vol. 36, L15501, 2009.

3. Kwok, R. and N. Untersteiner, "The thinning of Arctic sea ice," Physics Today, Vol. 64, No. 4, 36-41, 2011.

4. Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, "Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback ," Geophys. Res. Lett., Vol. 34, L19505, 2007.

5. Serreze, M. C., M. M. Holland, and J. Stroeve, "Perspectives on the Arctic’s shrinking ice cover," Science, Vol. 315, 1533-1536, 2007.

6. Komarov, A. S. and D. G. Barber, "Sea ice motion tracking from sequential dual-polarization RADARSAT-2 images," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 1, 121-136, 2014.

7. Thomas, M., C. Kambhamettu, and C. Geiger, "Motion tracking of discontinuous sea ice," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 12, 5064-5079, 2011.

8. Isleifson, D., B. Hwang, D. Barber, R. Scharien, and L. Shafai, "C-Band polarimetric backscattering signatures of newly formed sea ice during fall freeze-up," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 8, 3256-3267, 2010.

9. Moreira, A., P. Prats-Iraola, M. Younis, G. Kreiger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geosci. and Rem. Sens. Magazine, Vol. 1, No. 1, 6-43, 2013.

10. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 3, Artech House, Norwood, MA, 1986.

11. Kim, Y. S., R. Onstott, and R. Moore, "Effect of a snow cover on microwave backscatter from sea ice," IEEE J. Ocean. Eng., Vol. 9, No. 5, 383-388, 1984.

12. Carsey, F. D., Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, American Geophysical Union, 1992.

13. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 1, No. 2, Academic, New York, , 1978.

14. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1183-1191, 1995.

15. Nassar, E. M., J. T. Johnson, and R. Lee, "A numerical model for electromagnetic scattering from sea ice," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 3, 1309-1319, 2000.

16. Isleifson, D., I. Jeffrey, L. Shafai, J. LoVetri, and D. G. Barber, "A Monte Carlo method for simulating scattering from sea ice using FVTD," IEEE Trans. Geosci. Remote Sens, Vol. 50, No. 7, 2658-2668, 2012.

17. Rice, S. O., "Reflection of electromagnetic waves from slightly rough surfaces," Commun. Pure Appl. Math., Vol. 4, No. 2--3, 351-378, 1951.

18. Yarovoy, A. G., R. V. de Jongh, and L. P. Ligthard, "Scattering properties of a statistically rough interface inside a multilayered medium," Radio Sci., Vol. 35, No. 2, 455-462, 2000.

19. Fuks, I. M., "Wave diffraction by a rough boundary of an arbitrary plane-layered medium," IEEE Trans. Antennas Propag., Vol. 49, No. 4, 630-639, 2001.

20. Franceschetti, G., P. Imperatore, A. Iodice, D. Riccio, and G. Ruello, "Scattering from layered structures with one rough interface: A unified formulation of perturbative solutions," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1634-1643, 2008.

21. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from dielectric structures with two rough boundaries using the small perturbation method," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 8, 2006.

22. Imperatore, P., A. Iodice, and D. Riccio, "Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 4, 1056-1072, 2009.

23. Barber, D. G., R. Galley, M. G. Asplin, R. De Abreu, K.-A. Warner, M. Pucko, M. Gupta, S. Prinsenberg, and S. Julien, "Perennial pack ice in the southern Beaufort Sea was not as it appeared in the summer of 2009," Geophys. Res. Lett., Vol. 36, L24501, 2009.

24. Barber, D. G., "Microwave remote sensing, sea ice and Arctic climate," Phys. Can., Vol. 61, 105-111, 2005.

25. Fung, A. K. and K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, Boston, MA, 2010.

26. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave Remote Sensing: Active and Passive," Artech House, Vol. 2, 1990.

27. Fung, A. K., "Microwave Scattering and Emission Models and Their Applications," Artech House, 1994.

28. Valenzuela, G. R., "Theories for the interactions of electromagnetic and oceanic waves: A review," Boundary Layer Meteorol., Vol. 13, 61-85, 1978.

29. Collin, R. E., Antennas and Radio Wave Propagation, McGraw-Hill, New York, 1985.

30., RADARSAT-2 Product Description RN-SP-52-1238, MacDonald, Dettwiler and Associates Ltd. , Richmond, BC, Canada, 2009.

31. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, Wiley Interscience, 2001.

32. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 1, Artech House, Norwood, MA, 1986.

33. Stogryn, A. and G. D. Desargant, "The dielectric properties of brine in sea ice at microwave frequencies," IEEE Trans. Antennas Propag., Vol. 33, No. 5, 523-532, 1985.

34. Drinkwater, M. R. and G. B. Crocker, "Modeling changes in the dielectric and scattering properties of young snow covered sea ice at GHz frequencies," J. Glaciology, Vol. 34, No. 118, 274-282, 1988.

35. Hallikainen, M., F. Ulaby, and M. Abdelrazik, "Dielectric properties of snow in the 3 to 37GHz range," IEEE Trans. Antennas Propag., Vol. 34, No. 11, 1329-1340, 1986.

36. Khenchaf, A., "Bistatic reflection of electromagnetic waves from random rough surfaces. Application to the sea and snowy-covered surfaces," Eur. Phys. J. Applied Physics, Vol. 14, 45-62, 2001.

37. Gloersen, P. and J. K. Larabee, An Optical Model for the Microwave Properties of Sea Ice, NASA TM-83865, NASA Goddard Space Flight Center, Greenbelt, Maryland, 1981.

38. Mironov, V. L., M. C. Dobson, V. H. Kaupp, S. A. Komarov, and V. N. Kleshchenko, "Generalized refractive mixing dielectric model for moist soils," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 773-785, 2004.

39. Vant, M. R., R. B. Gray, R. O. Ramseier, and V. Makios, "Dielectric properties of fresh and sea ice at 10 and 35 GHz," J. Appl. Phys., Vol. 45, No. 11, 4712-4717, 1974.

40. Frankenstein, G. and R. Garner, "Equations for determining the brine volume of sea ice from ---- 0.5 C to −22.9 C," J. Glaciol., Vol. 6, No. 48, 943-944, 1967.

41. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microwave Theory Thech., Vol. 19, 733-736, 1971.

42. Bellman, R. and R. Vasudevan, Wave Propagation — An Invariant Embedding Approach, D. Reidel Publishing Company, 1986.

© Copyright 2014 EMW Publishing. All Rights Reserved