PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 144 > pp. 123-132

DESIGN OF POLARIZATION AND INCIDENT ANGLE INSENSITIVE DUAL-BAND METAMATERIAL ABSORBER BASED ON ISOTROPIC RESONATORS

By F. Dincer, M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah

Full Article PDF (640 KB)

Abstract:
Polarization and incident angle independent metamaterial-based absorber (MA) which acts as a strong dual-band resonator is designed and constructed. Besides, a method to design single/dual-band MA is presented in detail. The proposed model is based on isotropic ring resonator with gaps and octa-star strip (OSS) which allows maximization in the absorption because of the characteristic features of the structure. Reflection and absorption responses are obtained both numerically and experimentally and compared to each other. Two maxima in the absorption are experimentally obtained around 90% at 4.42 GHz for the first band and 99.7% at 5.62 GHz for the second band which are in good agreement with the numerical simulations (95.6% and 99.9%, respectively). The numerical studies verify that the dual-band MA can provide perfect absorption at wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. The proposed model can easily be used in many potential application areas such as security systems, sensors, medical imaging technology.

Citation:
F. Dincer, M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of Polarization and Incident Angle Insensitive Dual-Band Metamaterial Absorber Based on Isotropic Resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403
http://www.jpier.org/PIER/pier.php?paper=13111403

References:
1. Vesalago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Shelby, R. A., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

3. Chen, X., "Implicit boundary conditions in transformation-optics cloaking for electromagnetic waves," Progress In Electromagnetics Research, Vol. 121, 521-534, 2011.
doi:10.2528/PIER11101010

4. Silva-Macedo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended FDTD method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507

5. Zhang, Y. and M. A. Fiddy, "Covered image of superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013.
doi:10.2528/PIER12121206

6. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902

7. Bilotti, F., L. Nucci, and L. Vegni, "An SRR-based microwave absorber," Microw. Opt. Techn. Let., Vol. 48, 2171-2175, 2006.
doi:10.1002/mop.21891

8. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-4, 2008.

9. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, No. 1, 8-9, 2011.
doi:10.1049/el.2010.2770

10. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Opt. Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155

11. Li, L., Y. Yang, and C. H. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, 063702, 2011.
doi:10.1063/1.3638118

12. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Opt. Express, Vol. 21, No. 8, 9691-9702, 2013.
doi:10.1364/OE.21.009691

13. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108-4, 2009.
doi:10.1103/PhysRevB.80.085309

14. Zhu, B., Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, "Polarization modulation by tunable electromagnetic metamaterial reflector/absorber," Opt. Express, Vol. 18, No. 22, 23196-23203, 2010.
doi:10.1364/OE.18.023196

15. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

16. Huang, Y. J., G. J. Wen, J. Li, W. R. Zhu, P. Wang, and Y. H. Sun, "Wide-angle and polarization-independent metamaterial absorber based on snow flake-shaped configuration," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 5, 552-559, 2013.
doi:10.1080/09205071.2013.756383

17. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

18. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multi-layer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110

19. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605

20. Sabah, C. and F. Urbani, "Experimental analysis of ¤-shaped magnetic resonator for mu-negative metamaterials," Opt. Commun., Vol. 294, 409-413, 2013.
doi:10.1016/j.optcom.2012.12.071

21. Wiltshire, M. C. K., J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science, Vol. 291, No. 5505, 849-851, 2001.
doi:10.1126/science.291.5505.849

22. Sabah, C. and H. G. Roskos, "Terahertz sensing application by using planar split-ring-resonator structures," Microsyst. Technol., Vol. 18, 2071-2076, 2012.
doi:10.1007/s00542-012-1559-0

23. Sabah, C., "Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8--9, 1105-1115, 2012.
doi:10.1080/09205071.2012.710537

24. Sabah, C., "Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators," Appl. Phys. A: Mater. Sci. Process., Vol. 108, 457-463, 2012.
doi:10.1007/s00339-012-6913-7

25. Sabah, C., "Microwave response of octagon-shaped parallel plates: Low-loss metamaterial," Opt. Commun., Vol. 285, No. 21--22, 4549-4552, 2012.
doi:10.1016/j.optcom.2012.06.043

26. Sabah, C. and H. G. Roskos, "Broadside-coupled triangular split-ring-resonators for terahertz sensing," Eur. Phys. J. | Appl. Phys., Vol. 61, 30402, 2013.
doi:10.1109/JSTQE.2012.2193875

27. Sabah, C., "Multiband metamaterials based on multiple concentric open-ring resonators topology," IEEE J. Sel. Top. Quant. Electron., Vol. 19, 8500808, 2013.
doi:10.2528/PIER13050601

28. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.

29. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER12072008

30. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.
doi:10.2528/PIER11112301

31. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM Design analysis of new metamaterial for EM," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11121903

32. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER03052601

33. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
doi:10.2528/PIER07101702

34. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.

35. Malek, M. F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A.,A. R. Othman, P. J. Soh, A. A. A.-H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.
doi:10.2528/PIER12030601

36. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber ," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.
doi:10.2528/PIER08042805

37. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008.
doi:10.2528/PIER06040601

38. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER10071409

39. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.

40. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
doi:10.2528/PIER13061105

41. Dincer, F., M. Karaaslan, E. Unal, and C. Sabah, "Dual-band polarization independent metamaterial absorber based on omega resoanator and octa-star strip configuration," Progress In Electromagnetics Research,, Vol. 141, 219-231, 2013.
doi:10.2528/PIER13050601

42. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-2013, 2013.


© Copyright 2014 EMW Publishing. All Rights Reserved