PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 144 > pp. 93-101

POLARIZATION ANGLE INDEPENDENT PERFECT METAMATERIAL ABSORBERS FOR SOLAR CELL APPLICATIONS IN THE MICROWAVE, INFRARED, AND VISIBLE REGIME

By F. Dincer, O. Akgol, M. Karaaslan, E. Unal, and C. Sabah

Full Article PDF (747 KB)

Abstract:
We design, characterize, and analyze a new kind of metamaterial (MTM) absorber (MA) in different frequency regions for the solar cell applications. This MTM based structure is particularly presented in a range of the solar spectrum in order to utilize the solar energy effectively. The proposed MTM based solar cell provides perfect absorption for both infrared and visible frequency ranges and can be used for the realization of more efficient new solar cells. The structure is also tested in terms of the polarization angle independency. The suggested MA has a simple configuration which introduces flexibility to adjust its MTM properties to be used in solar cells and can easily be re-scaled for other frequency ranges. Our experimental results in microwave frequencies confirm the perfect absorption for the resonance frequency and agree with the simulation results. This means that the developed MA for solar cells will offer perfect absorption in infrared and even in visible frequencies.

Citation:
F. Dincer, O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization Angle Independent Perfect Metamaterial Absorbers for Solar Cell Applications in the Microwave, Infrared, and Visible Regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.
doi:10.2528/PIER13111404
http://www.jpier.org/PIER/pier.php?paper=13111404

References:
1. Dincer, F., "The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy," Renew. Sust. Energ. Rev., Vol. 15, 713-720, 2011.
doi:10.1016/j.rser.2010.09.026

2. Dincer, F., "Overview of the photovoltaic technology status and perspective in Turkey," Renew. Sust. Energ. Rev., Vol. 15, 3768-3779, 2011.
doi:10.1016/j.rser.2011.06.005

3. Liu, Y., Y. Chen, J. Li, T. Hung, and J. Li, "Study of energy absorption on solar cell using metamaterials," Sol. Energy, Vol. 86, 1586-1599, 2012.
doi:10.1016/j.solener.2012.02.021

4. Meral, M. E. and F. Dincer, "A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems," Renew. Sust. Energ. Rev., Vol. 15, 2176-2184, 2013.
doi:10.1016/j.rser.2011.01.010

5. Aslam, M. I. and S. M. Ali, "A wideband metamaterial absorber for solar cell applications," Proceedings of International Conference on Energy and Sustainability, 113-116, 2013.

6. Elwi, T. A. and H. M. Al-Rizzo, "Fresnel lenses based on nano shell-silver coated silica array for solar cells applications," Progress In Electromagnetics Research B, Vol. 32, 263-282, 2011.
doi:10.2528/PIERB11061309

7. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104-3, 2010.

8. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt , "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization ," Phys. Rev. B, Vol. 78, No. 24, 241103-4, 2008.
doi:10.1103/PhysRevB.78.241103

9. Shen, X., T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, No. 10, 9401-9407, 2011.
doi:10.1364/OE.19.009401

10. Liu, X., T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, No. 4, 045901-4, 107,.

11. Kao, T. S., F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, "Metamaterial as a controllable template for nanoscale field localization," Appl. Phys. Lett., Vol. 96, No. 4, 041103-3, 2010.
doi:10.1063/1.3291675

12. Lin, C. H., R. L. Chern, and H. Y. Lin, "Polarization-independent broad-band nearly perfect absorbers in the visible regime," Opt. Express, Vol. 19, No. 2, 415-424, 2011.
doi:10.1364/OE.19.000415

13. Guo, W., L. He, B. Li, T. Teng, and X. W. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2013.

14. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

15. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301

16. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multi-layer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.

17. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

18. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.


© Copyright 2014 EMW Publishing. All Rights Reserved