PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 145 > pp. 1-10

GPR SIGNAL ENHANCEMENT USING SLIDING-WINDOW SPACE-FREQUENCY MATRICES

By M. E. Yavuz, A. E. Fouda, and F. L. Teixeira

Full Article PDF (609 KB)

Abstract:
Ground penetrating radar (GPR) has shown to provide useful results for detection of buried objects. However, its performance suffers from strong reflection from ground surface especially for shallowly buried targets. In such cases, the detection problem depends on the separation of the target signal from the ground backscatter such as landmines and unexploded ordnances. In this paper, we discuss and analyze the use of space-frequency time-reversal matrices for the enhancement of ground penetrating radar signals and potential clutter reduction. Through the use of sliding windows, submatrices from a given B-scan (radargram) are utilized to extract localized scattering information of a given detection scenario. Each sub-B-scan is decomposed to its singular vectors and later used to render synthetic aperture time-domain singular vector distributions corresponding to different scattering mechanisms. Later, they are weighted by the singular values and subtracted from the full B-scan to achieve reduced clutter and enhanced target response. The method shows satisfactory results for shallowly buried dielectric targets even in the presence of rough surface profiles.

Citation:
M. E. Yavuz, A. E. Fouda, and F. L. Teixeira, "GPR Signal Enhancement Using Sliding-Window Space-Frequency Matrices," Progress In Electromagnetics Research, Vol. 145, 1-10, 2014.
doi:10.2528/PIER14010105
http://www.jpier.org/PIER/pier.php?paper=14010105

References:
1. Daniels, D. J., "Ground Penetrating Radar," IEE, 2004.

2. Dogaru, T. and L. Carin, "Time-domain sensing of targets buried under a rough air-ground interface," IEEE Trans. Antennas Propagat., Vol. 46, No. 3, 360-372, 1998.
doi:10.1109/8.662655

3. Brunzell, H., "Detection of shallowly buried objects using impulse radar," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 2, 875-886, 1999.
doi:10.1109/36.752207

4. Potin, D., E. Duflos, and P. Vanheeghe, "Landmines ground-penetrating radar signal enhancement by digital filtering," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 9, 2393-2406, 2006.
doi:10.1109/TGRS.2006.875356

5. Van der Merwe , A. and I. J. Gupta, "A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 6, 2627-2637, 2000.
doi:10.1109/36.885209

6. Xu, X., E. L. Miller, C. M. Rappaport, and G. D. Sower, "Statistical method to detect subsurface objects using array ground-penetrating radar data," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 4, 963-976, 2002.
doi:10.1109/TGRS.2002.1006391

7. Gunatilaka, A. H. and B. A. Baertlein, "Subspace decomposition technique to improve gpr imaging of antipersonnel mines ," Proc. SPIE 4038, Detection and Remediation Technologies for Mines and Minelike Targets, Vol. V, 1008, 2000.

8. Abujarad, F., A. Jostingmeier, and A. Omar, "Clutter removal for landmine using different signal processing techniques," Proc. of the Tenth IEEE Int. Conf. on Ground Penetrating Radar GPR 2004, 697-700, 2004.

9. Abujarad, F., G. Nadim, and A. Omar, "Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD)," 2005 Proc. of the 3rd Int. Workshop on Advanced Ground Penetrating Radar IWAGPR, 37-42, 2005.
doi:10.1109/AGPR.2005.1487840

10. Solimene, R. and A. D'Alterio, "Entropy-based clutter rejection for intrawall diagnostics," International Journal of Geophysics, Vol. 2012, 7, 2012.

11. Brooks, J. W., L. M. V. Kempen, and H. Sahli, "Primary study in adaptive clutter reduction and buried minelike target enhancement from GPR data," Proc. SPIE, Vol. 4038, 1183-1192, 2000.
doi:10.1117/12.396226

12. Vicen-Bueno, R., R. Carrasco-Alvarez, M. Rosa-Zurera, and J. Nieto-Borge, "Sea clutter reduction and target enhancement by neural networks in a marine radar system," Sensors, Vol. 9, No. 3, 1913-1936, 2009.
doi:10.3390/s90301913

13. Roy, S. and J. Maheux, "Baseline processing pipeline for fast automatic target detection and recognition in airborne 3D ladar imagery," Proc. SPIE, Vol. 8049, 80490S, 2011.
doi:10.1117/12.883287

14. Vicen-Bueno, R., M. Rosa-Zurera, M. Jarabo-Amores, and R. Gil-Pita, "Automatic target detection in simulated ground clutter (weibull distributed) by multilayer perceptrons in a low-resolution in simulated ground clutter (weibull distributed) by multilayer perceptrons in a low-resolution," IET Radar, Sonar & Navigation, Vol. 4, No. 2, 315-328, 2010.
doi:10.1049/iet-rsn.2009.0080

15. Yavuz, M. E. and F. L. Teixeira, "Space-frequency ultrawideband time-reversal imaging ," IEEE Trans. Geosci. Remote Sensing, Vol. 46, No. 4, 1115-1124, 2008.
doi:10.1109/TGRS.2008.915755

16. Fink, M., D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. Thomas, and F. Wu, "Timereversed acoustics," Rep. Prog. Phys., Vol. 63, 1933-1995, 2000.
doi:10.1088/0034-4885/63/12/202

17. Fouda, A. E., F. L. Teixeira, and M. E. Yavuz, "Time-reversal techniques for MISO and MIMO wireless communication systems," Radio Sci., Vol. 47, No. RS0P02 , 2012.

18. Yavuz, M. E. and F. L. Teixeira, "Ultrawideband microwave sensing and imaging using time-reversal techniques: A review," Remote Sens., Vol. 1, No. 3, 466-495, 2009.
doi:10.3390/rs1030466

19. Foroozan, F. and A. Asif, "Time-reversal ground-penetrating radar: Range estimation with Cramer-Rao lower bound," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3698-3708, 2010.
doi:10.1109/TGRS.2010.2047726

20. Zhu, X., Z. Zhao, W. Yang, Y. Zhang, Z. Nie, and Q. H. Liu, "Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.

21. Potin, D., P. Vanheeghe, E. Du°os, and M. Davy, "An abrupt change detection algorithm for buried landmines localization," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 2, 260-272, 2006.
doi:10.1109/TGRS.2005.861413

22. Moss, C. D., F. L. Teixeira, Y. E. Yang, and J. A. Kong, "Finite-diFFerence time-domain simulation of scattering from objects in continuous random media ," IEEE Trans. Geosci. Remote Sensing, Vol. 40, 178-186, 2002.
doi:10.1109/36.981359

23. Yavuz, M. E., A. E. Fouda, and F. L. Teixeira, "Target classification through time-reversal operator analysis using ultrawideband electromagnetic waves," Proc. of the 5th European Conf. on Antennas and Propagation (EUCAP), 14-18, 2011.


© Copyright 2014 EMW Publishing. All Rights Reserved