PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 145 > pp. 299-308

CHANNEL CHARACTERIZATION AND FINITE-STATE MARKOV CHANNEL MODELING FOR TIME-VARYING PLASMA SHEATH SURROUNDING HYPERSONIC VEHICLES

By G. He, Y. Zhan, N. Ge, Y. Pei, B. Wu, and Y. Zhao

Full Article PDF (265 KB)

Abstract:
Effects on the communication signals caused by the time-varying plasma sheath surrounding hypersonic vehicles are investigated. Using computational fluid dynamics (CFD) technique, Demetriades's plasma turbulence model and finite-difference time-domain (FDTD) algorithm, amplitude variation and phase fluctuation induced by plasma electron density turbulence are obtained, and their statistical properties are analyzed and characterized. Furthermore, a finite-state Markov channel (FSMC) model is proposed, to represent the dynamical effects on electromagnetic wave propagation through plasma sheath. With high accuracy and greatly reduced complexity, the FMSC model could be very useful to develop novel communication techniques for alleviating the radio blackout problem.

Citation:
G. He, Y. Zhan, N. Ge, Y. Pei, B. Wu, and Y. Zhao, "Channel Characterization and Finite-State Markov Channel Modeling for Time-Varying Plasma Sheath Surrounding Hypersonic Vehicles," Progress In Electromagnetics Research, Vol. 145, 299-308, 2014.
doi:10.2528/PIER14031104
http://www.jpier.org/PIER/pier.php?paper=14031104

References:
1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328

2. Akey, N. D., "Overview of RAM reentry measurements program," The Entry Plasma Sheath and Its E®ects on Space Vehicle Electromagnetic Systems, 19-31, 1970.

3. Hartunian, R. A., G. E. Stewart, S. D. Fergason, T. J. Curtiss, and R. W. Seibold, "Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles,", Contractor Rep. ATR-2007(5309)-1, Aerospace Corporation, CA, 2007.

4. Gilllman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation,", NASA/TM-2010-216220, NASA, Washington, DC, 2010.

5. Morabito, D. D., "The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres," IPN Progress Report 42-150, 1-16, Aug. 2002.

6. Liu, S., Z. Tao, M. Liu, and W. Hong, "WKB and FDTD analysis of Terahertz band electromagnetic characteristics of target coated with unmagnetized plasma," Journal of Systems Engineering and Electronics, Vol. 19, No. 1, 1520, 2008.

7. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetic Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

8. Shi, L., B. W. Bai, Y. M. Liu, and X. P. Li, "Navigation antenna performance degradation caused by plasma sheath," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 4, 518-528, 2013.
doi:10.1080/09205071.2013.755110

9. Zhao, L., B. W. Bai, W. M. Bao, and X. P. Li, "Effects of reentry plasma sheath on GPS patch antenna polarization property," International Journal of Antennas and Propagation, Article ID 823626, 2013.

10. Liu, J. F., X. L. Xi, G. B. Wan, and L. L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 852-855, 2011.
doi:10.1109/TPS.2010.2098890

11. Ohler, S. G., B. E. Gilchrist, and . D. Gallimore, "Electromagnetic signal modification in a localized high-speed plasma °ow: Simulations and experimental validation of a stationary plasma thruster," IEEE Transactions on Plasma Science, Vol. 27, No. 2, 587-594, 1999.
doi:10.1109/27.772290

12. Gao, P., X. P. Li, Y. M. Liu, M. Yang, and J. Li, "Plasma sheath phase fluctuation and its effect on GPS navigation," 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), 579-582, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408837

13. Yang, M., X. P. Li, Y. M. Liu, L. Shi, and X. L. Wang, "Characteristic of time-varying plasma sheath channel," 2012 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), 575-578, Xi'an, China, 2012.
doi:10.1109/ISAPE.2012.6408836

14. osyula, E. and W. Bailey, "Governing equations for weakly ionized plasma fields of aerospace vehicles," Journal of Spacecraft and Rockets, Vol. 40, No. 6, 845-857, 2003.
doi:10.2514/1.10800

15. COESA, "U.S. Standard Atmosphere,", U.S. Government Printing O±ce, Washington, DC, 1976.

16. Kistler, A. L., "Fluctuation measurements in a supersonic turbulent boundary layer," Physics of Fluids, Vol. 2, 290-296, May 1959.
doi:10.1063/1.1705925

17. Fisher, M. C., "Boundary layer surveys on a nozzle wall at M = 20 including hot-wire fluctuation measurements," AIAA 3rd Fluid and Plasma Dynamics Conference, 1970.

18. Lin, T. C. and L. K. Sproul, "In°uence of reentry turbulent plasma fluctuation on EM wave propagation," Computers & Fluids, Vol. 35, 703-711, 2006.
doi:10.1016/j.compfluid.2006.01.009

19. Demrtriades, A. and R. Grabow, "Mean and °uctuating electron density in equilibrium turbulent boundary layers," AIAA, Vol. 9, 1533-1538, 1971.
doi:10.2514/3.49956

20. Lederman, A. J. and A. Demetriades, "Mean and fluctuating measurements in the hypersonic boundary layer over a cooled wall," Journal of Fluid Mechanics, Vol. 63, 121-144, 1974.
doi:10.1017/S0022112074001042

21. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation is isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.

22. Ta°ove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House Publishers, 2005.

23. Dong, X. T., W. Y. Yin, and Y. B. Gan, "Perfectly matched layer implementation using bilinear transform for microwave device applications," IEEE Transactions on Microwave Theory and Technique, Vol. 53, No. 10, 3098-3105, Oct. 2005.
doi:10.1109/TMTT.2005.855121

24. Wang, H. S. and N. Moyaeri, "Finite-state Markov channel --- A useful model for radio communication channels," IEEE Trans. Veh. Technol., Vol. 44, No. 2, 163-171, Feb. 1995.
doi:10.1109/25.350282

25. Sadeghi, P., R. A. Kennedy, P. Rapajic, and R. Shams, "Finite-state Markov modeling of fading channels --- A survey of principles and applications," IEEE Signal Process. Mag., Vol. 25, No. 5, 57-80, Sep. 2008.
doi:10.1109/MSP.2008.926683

26. Lin, H. P. and M. J. Tseng, "Two-layer multistate Markov model for modelling a 1.8 GHz narrow-band wireless propagation channel gin urban Taipei city," IEEE Trans. Veh. Technol., Vol. 54, No. 4, 435-446, Mar. 2005.
doi:10.1109/TVT.2004.841523

27. Morgadinho, S., et al., "Time-variant radio channel characterization and modelling of vegetation media at millimeter-wave frequency," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1557-1568, Mar. 2012.
doi:10.1109/TAP.2011.2180301


© Copyright 2014 EMW Publishing. All Rights Reserved