PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 148 > pp. 113-128

LATTICE MAXWELL'S EQUATIONS (Invited Paper)

By F. L. Teixeira

Full Article PDF (250 KB)

Abstract:
We discuss the ab initio rendering of four-dimensional (4-d) spacetime of Maxwell's equations on random (irregular) lattices. This rendering is based on casting Maxwell's equations in the framework of the exterior calculus of differential forms, and a translation thereof to a simplicial complex whereby fields and causative sources are represented as differential p-forms and paired with the oriented p-dimensional geometrical objects that comprise the set of spacetime lattice cells (simplices). We pay particular attention to the case of simplicial spacetime lattices because these can serve as building blocks of lattices made of more generic cells (polygons). The generalized Stokes' theorem is used to construct discrete calculus operations on the lattice based upon combinatorial relations depending solely on the connectivity and relative orientation among simplices. This rendering provides a natural factorization of (lattice) 4-d spacetime Maxwell's equations into a metric-free part and a metric-dependent part. The latter is encoded by discrete Hodge star operators which are built using Whitney forms, i.e., canonical interpolants for discrete differential forms. The derivation of Whitney forms is illustrated here using a geometrical construction based on the concept of barycentric coordinates to represent a point on a simplex, and the generalization thereof to represent higher-dimensional objects (lines, areas, volumes, and hypervolumes) in 4-d. We stress the role of the primal lattice, the barycentric dual lattice, and the barycentric decomposition lattice in achieving a complete description of the lattice theory. Lattice Maxwell's equations based on the exterior calculus of differential forms and on the use of Whitney forms as field interpolants inherits the symplectic structure and discrete analogues of conservation laws present in the continuum theory, such as energy and charge conservation. This framework also provides precise localization rules for the degrees of freedom associated with the different fields and sources on the lattice, and design principles for constructing consistent numerical solution methods that are free from spurious modes, spectral pollution, and (unconditional) numerical instabilities. We also brie y consider the relationship between lattice 4-d Maxwell's equations and some incarnations of discretization schemes for Maxwell's equations in (3+1)-d, such as finite-differences and finite-elements.

Citation:
F. L. Teixeira, "Lattice Maxwell's Equations (Invited Paper)," Progress In Electromagnetics Research, Vol. 148, 113-128, 2014.
doi:10.2528/PIER14062904
http://www.jpier.org/PIER/pier.php?paper=14062904

References:
1. Bott, R., "On some recent interactions between mathematics and physics," Canad. Math. Bull., Vol. 28, No. 2, 129-164, 1985.
doi:10.4153/CMB-1985-016-3

2. Gockeler, M. and T. Schuker, Differential Geometry, Gauge Theories, and Gravity, Cambridge University Press, 1987.
doi:10.1017/CBO9780511628818

3. Burgess, M., Classical Covariant Fields, Cambridge University Press, 2002.
doi:10.1017/CBO9780511535055

4. Zee, A., Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, NJ, 2003.

5. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767

6. Teixeira, F. L., "Differential forms in lattice field theories: An overview," ISRN Math. Phys., Vol. 2013, 487270, 2013.

7. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250

8. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman and Co., New York, 1973.

9. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-696, 1982.

10. Schenberg, M., "Electromagnetism and gravitation," Braz. J. Phys., Vol. 1, 91-122, 1971.

11. Warnick, K. F. and P. Russer, "Two, three, and four-dimensional electromagnetics using differential forms," Turk. J. Elec. Engin., Vol. 14, No. 1, 153-172, 2006.

12. Gross, P. W. and P. R. Kotiuga, "Data structures for geometric and topological aspects of finite element algorithms," Progress In Electromagnetics Research, Vol. 32, 151-169, 2001.
doi:10.2528/PIER00080106

13. Teixeira, F. L., "Geometrical aspects of the simplicial discretization of Maxwell’s equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107

14. Tonti, E., "Finite formulation of the electromagnetic field," Progress In Electromagnetics Research, Vol. 32, 1-44, 2001.
doi:10.2528/PIER00080101

15. Gross, P. W. and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach, Cambridge University Press, 2004.
doi:10.1017/CBO9780511756337.002

16. Adams, D. H., "R-torsion and linking numbers from simplicial Abelian gauge theories," High Energy Physics — Theory, 9612009, 1996.

17. Sen, S., S. Sen, J. C. Sexton, and D. H. Adams, "Geometric discretization scheme applied to the Abelian Chern-Simons theory," Phys. Rev. E, Vol. 61, No. 3, 3174-3185, 2000.
doi:10.1103/PhysRevE.61.3174

18. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

19. Schuhmann, R. and T. Weiland, "Conservation of discrete energy and related laws in the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 301-316, 2001.
doi:10.2528/PIER00080112

20. He, B. and F. L. Teixeira, "On the degrees of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, No. 1, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001

21. Kheyfets, A. and W. A. Miller, "The boundary of a boundary in field theories and the issue of austerity of the laws of physics," J. Math. Phys., Vol. 32, No. 11, 3168-3175, 1991.
doi:10.1063/1.529519

22. Guth, A. H., "Existence proof of a nonconfining phase in four-dimensional U(1) lattice field theory," Physical Review D, Vol. 21, No. 8, 2291-2307, 1980.
doi:10.1103/PhysRevD.21.2291

23. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, NJ , 1957.

24. Bossavit, A., "Generalized finite differences’ in computational electromagnetics," Progress In Electromagnetics Research, Vol. 32, 45-64, 2001.
doi:10.2528/PIER00080102

25. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, No. 1–4, 1-14, 2006.
doi:10.1016/j.physleta.2005.09.002

26. Schwarz, A. S., Topology for Physicists, Springer-Verlag, New York, 1994.
doi:10.1007/978-3-662-02998-5_1

27. Bossavit, A., "Whitney forms: A new class of finite elements for three-dimensional computations in electromagnetics," IEE Proc. A, Vol. 135, 493-500, 1988.

28. Salamon , J., J. Moody, and M. Leok, "Geometric representations of Whitney forms and their generalization to Minkowski spacetime," Numerical Analysis, 1402.7109, 2014.

29. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 76, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5

30. Osterwalder, K. and R. Schrader, "Axioms for Euclidean Green’s functions," Comm. Math. Phys., Vol. 31, No. 2, 83-112, 1973.
doi:10.1007/BF01645738

31. Montvay, I. and G. Munster, Quantum Fields on a Lattice, Cambridge University Press, 1994.
doi:10.1017/CBO9780511470783

32. Ambjorn, J., J. Jurkiewicks, and R. Loll, "Emergence of a 4D world from causal quantum gravity," Phys. Rev. Lett., Vol. 93, 131301, 2004.
doi:10.1103/PhysRevLett.93.131301

33. Ambjorn, J., A. Gorlich, J. Jurkiewicks, and R. Loll, "Nonperturbative quantum gravity," Phys. Rep., Vol. 519, 127, 2012.
doi:10.1016/j.physrep.2012.03.007

34. Jordan, S. and R. Loll, "Causal dynamical triangulations without preferred foliation," High Energy Physics — Theory, 1305.4582, 2013.

35. Erickon, J., D. Guoy, J. M. Sullivan, and A. Ungor, "Buliding space-time meshes over arbitrary spatial domains," Engg. Computers, Vol. 290, 342-353, 2005.
doi:10.1007/s00366-005-0303-0

36. Thite, S., "Adaptive spacetime meshing fod discontinuous Galerkin methods," Comp. Geom., Vol. 42, No. 1, 20-44, 2009.
doi:10.1016/j.comgeo.2008.07.003

37. Stern, A., Y. Tong, M. Desbrun, and J. E. Mardsen, "Variational integrators for mMxwell’s equations with sources," PIERS Online, Vol. 4, No. 7, 711-715, 2008.
doi:10.2529/PIERS071019000855

38. Kim, J. and F. L. Teixeira, "Parallel and explicit finite-element time-domain method for Maxwell’s equations," IEEE Trans. Antennas Propagat., Vol. 59, No. 6, 2350-2356, 2011.
doi:10.1109/TAP.2011.2143682

39. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of the discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250

40. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equation is isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, 1969.

41. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.

42. Mattiussi, C., "The geometry of time-stepping," Progress In Electromagnetics Research, Vol. 32, 123-149, 2001.
doi:10.2528/PIER00080105


© Copyright 2014 EMW Publishing. All Rights Reserved