PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 150 > pp. 145-161

OMNIDIRECTIONAL RADIATION IN THE PRESENCE OF HOMOGENIZED METASURFACES

By D. Di Ruscio, P. Burghignoli, P. Baccarelli, and A. Galli

Full Article PDF (460 KB)

Abstract:
Analytical and numerical approaches are presented for modeling the interaction of azimuthally symmetric fields with omnidirectional metasurfaces, based on the use of locally homogenized equivalent sheet impedances. Radially uniform metasurfaces on layered dielectric media are described in terms of a spectral impedance dyadic, thus allowing for the derivation of the field excited by omnidirectional sources through a simple transmission-line model. In a first approximation, the effect of circular edges in laterally truncated structures is taken into account through an efficient physicaloptics method. Then, truncated and radially non-uniform homogenized layered structures are treated numerically with the method of moments, by suitably extending a recently developed spectral-domain formulation. Numerical results are presented for planar radiating structures based on omnidirectional metasurfaces, comparing the radiation patterns obtained through the proposed homogenized models with those calculated by means of full-wave simulations. The discussion emphasizes the validity of the proposed approaches and their usefulness in the analysis of two-dimensional leaky-wave antennas based on printed omnidirectional metasurfaces.

Citation:
D. Di Ruscio, P. Burghignoli, P. Baccarelli, and A. Galli, "Omnidirectional Radiation in the Presence of Homogenized Metasurfaces," Progress In Electromagnetics Research, Vol. 150, 145-161, 2015.
doi:10.2528/PIER14121504
http://www.jpier.org/PIER/pier.php?paper=14121504

References:
1. Baccarelli, P., P. Burghignoli, G. Lovat, and S. Paulotto, "A novel printed leaky-wave ‘bull-eye’ antenna with suppressed surface-wave excitation," Digest 2004 IEEE AP-S Symp. Ant. Prop., Vol. 1, 1078-1081, 2004.
doi:10.1109/APS.2004.1329861

2. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric EBG structures for reducing surface waves in printed antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3210-3218, Oct. 2005.
doi:10.1109/TAP.2005.856365

3. Sutinjo, A., M. Okoniewski, and R. H. Johnston, "A holographic antenna approach for surface wave control in microstrip antenna applications," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 675-682, Mar. 2010.
doi:10.1109/TAP.2009.2039316

4. Podilchak, S. K., Y. M. M. Antar, A. P. Freundorfer, P. Baccarelli, P. Burghignoli, S. Paulotto, and G. Lovat, "Planar antenna for continuous beam scanning and broadside radiation by selective surface wave suppression," Electronics Letters, Vol. 46, No. 9, 613-614, Apr. 2010.
doi:10.1049/el.2010.0074

5. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of a new annular multi-slits antenna using wave concept iterative process in cylindrical coordinates," Ann. Telecommun., Vol. 66, 383-394, 2011.
doi:10.1007/s12243-010-0225-8

6. Podilchak, S. K., P. Baccarelli, P. Burghignoli, A. P. Freundorfer, and Y. M. M. Antar, "Optimization of a planar bull-eye leaky-wave antenna fed by a printed surface-wave source," IEEE Antennas Wireless Propag. Lett., Vol. 12, 665-669, 2013.
doi:10.1109/LAWP.2013.2262572

7. Ettorre, M. and A. Grbic, "Generation of propagating Bessel beams using leaky modes," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3605-3613, Aug. 2012.
doi:10.1109/TAP.2012.2201088

8. Podilchak, S. K., P. Baccarelli, P. Burghignoli, A. P. Freundorfer, and Y. M. M. Antar, "Analysis and design of annular microstrip-based planar periodic leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2978-2991, Jun. 2014.
doi:10.1109/TAP.2014.2314735

9. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, Aug. 2002.
doi:10.1126/science.1071895

10. Jackson, D. R., A. A. Oliner, Y. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: Leaky-wave model and open stopband effect," Radio Sci., Vol. 40, 1-12, 2005.
doi:10.1029/2004RS003226

11. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Materials, Vol. 9, 193-204, Mar. 2010.
doi:10.1038/nmat2630

12. Fu, Y. and X. Zhou, "Plasmonic lenses: A review," Plasmonics, Vol. 5, No. 3, 287-310, Jun. 2010.
doi:10.1007/s11468-010-9144-9

13. Bao, Q. and K. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, No. 5, 3677-3694, 2012.
doi:10.1021/nn300989g

14. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A

15. Sun, Z., T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano, Vol. 4, No. 2, 803-810, 2010.
doi:10.1021/nn901703e

16. Bonaccorso, F., Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics, Vol. 4, No. 9, 611-622, 2010.
doi:10.1038/nphoton.2010.186

17. Berry, C. W., N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nat. Commun., Vol. 4, 1622, 2013.
doi:10.1038/ncomms2638

18. Politano, A., "Low-energy collective electronic mode at a noble metal interface," Plasmonics, Vol. 8, No. 2, 357-360, 2013.
doi:10.1007/s11468-012-9397-6

19. Baccarelli, P., P. Burghignoli, D. Comite, D. Di Ruscio, A. Galli, P. Lampariello, and D. R. Jackson, "Annular reconfigurable metasurface for omnidirectional dual-pol leaky-wave antennas," 7th Europ. Conf. Antennas Prop. (EuCAP), Gothenburg, Sweden, Apr. 8-11, 2013.

20. Guo, Y. J., A. Paez, R. A. Sadeghzadeh, and S. K. Barton, "A circular patch antenna for radio LANs," IEEE Trans. Antennas Propag., Vol. 45, No. 1, 177-178, Jan. 1997.
doi:10.1109/8.554256

21. McEwan, N. J., R. A. Abd-Alhameed, E. M. Ibrahim, P. S. Excell, and J. G. Gardiner, "A new design of horizontally polarized and dual-polarized uniplanar conical beam antennas for HIPERLAN," IEEE Trans. Antennas Propag., Vol. 51, No. 2, 229-237, Feb. 2003.
doi:10.1109/TAP.2003.809058

22. Bregains, J. C., G. Franceschetti, A. G. Roederer, and F. Ares, "New toroidal beam antennas for WLAN communications," IEEE Trans. Antennas Propag., Vol. 55, 389-398, Feb. 2007.
doi:10.1109/TAP.2006.889796

23. Zhou, D., R. A. Abd-Alhameed, C. H. See, N. J. McEwan, and P. S. Excell, "New circularly-polarized conical-beam microstrip patch antenna array for short-range communication systems," Microw. Opt. Technol. Lett., Vol. 51, 78-81, Jan. 2009.
doi:10.1002/mop.23956

24. Batchelor, J. C. and R. J. Langley, "Microstrip ring antennas operating at higher order modes for mobile communications," IEE Proc. Microw. Antennas Propag., Vol. 142, No. 2, 151-155, Apr. 1995.
doi:10.1049/ip-map:19951826

25. Ares, F., G. Franceschetti, J. Mosig, S. Vaccaro, J. Vassallo, and E. Noreno, "Satellite communication with moving vehicles on Earth: Two prototype circular array antennas," Microw. Opt. Technol. Lett., Vol. 39, No. 1, 14-16, Oct. 2003.
doi:10.1002/mop.11112

26. Son, S. H., S. I. Jeon, C. J. Kim, and W. B. Hwang, "GA-based design of multi-ring arrays with omnidirectional conical beam pattern," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1527-1534, May 2010.
doi:10.1109/TAP.2010.2044326

27. Jackson, D. R. and A. A. Oliner, "Leaky-wave antennas," Modern Antenna Handbook, C. A. Balanis (Ed.), Ch. 7, Wiley, New York, 2008.

28. Jackson, D. R. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 33, No. 9, 976-987, Sep. 1985.
doi:10.1109/TAP.1985.1143709

29. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

30. Zhao, T., D. R. Jackson, J. T. Williams, H.-Y. D. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas — Part I: Metal patch design; Part II: Slot design," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3505-3524, Nov. 2005.
doi:10.1109/TAP.2005.858579

31. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

32. Sievenpiper, D., "Forward and backward leaky-wave radiation with large effective aperture from an electronically tunable textured surface," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 236-247, Jun. 2005.
doi:10.1109/TAP.2004.840516

33. Patel, A. M. and A. Grbic, "A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2087-2096, Jun. 2011.
doi:10.1109/TAP.2011.2143668

34. Minatti, G., F. Caminita, M. Casaletti, and S. Maci, "Spiral leaky-wave antennas based on modulated surface impedance," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4436-4444, Dec. 2011.
doi:10.1109/TAP.2011.2165691

35. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Sec. 4.4.2, Artech House, Norwood, MA, 2003.

36. Luukkonen, O., C. R. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1624-1632, Jun. 2008.
doi:10.1109/TAP.2008.923327

37. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Trans. Antennas Propag. Mag., Vol. 54, No. 2, 10-35, Apr. 2012.
doi:10.1109/MAP.2012.6230714

38. Salem, M. A., K. Achouri, and C. Caloz, "Metasurface synthesis for time-harmonic waves: Exact spectral and spatial methods," Progress In Electromagnetics Research, Vol. 149, 205-216, 2014.
doi:10.2528/PIER14100505

39. Di Ruscio, D., P. Burghignoli, P. Baccarelli, D. Comite, and A. Galli, "Spectral method of moments for planar structures with azimuthal symmetry," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2317-2322, Apr. 2014.
doi:10.1109/TAP.2014.2302831

40. Gomez-Tornero, J. L., D. Blanco, E. Rajo-Iglesias, and N. Llombart, "Holographic surface leaky-wave lenses with circularly-polarized focused near-fields — Part I: Concept, design and analysis theory," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3475-3485, Jul. 2013.
doi:10.1109/TAP.2013.2257644

41. FEKO Suite 6.0, EM Software and Systems, , Technopark, Stellenbosh, 7600, South Africa, 2010; http://www.feko.co.za.

42. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

43. Felsen, L. and N. Marcuvitz, Radiation and Scattering of Waves, Ch. 2, Prentice-Hall, Englewood Cliffs, NJ, 1973.

44. Ostner, H., E. Schmidhammer, J. Detlefsen, and D. R. Jackson, "Radiation from dielectric leaky-wave antennas with circular and rectangular apertures," Electromagn., Vol. 17, No. 5, 505-535, 1997.
doi:10.1080/02726349708908557

45. Fong, B. H., J. S. Colburn, J. J. Ottusch, J. L. Vischer, and D. F. Sievenpiper, "Scalar and tensor holographic artificial impedance surfaces," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3212-3221, Oct. 2010.
doi:10.1109/TAP.2010.2055812

46. Paulotto, S., P. Baccarelli, P. Burghignoli, G. Lovat, G. Hanson, and A. B. Yakovlev, "Homogenized Green’s functions for an aperiodic line source over planar densely periodic artificial impedance surfaces," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 7, 1807-1817, Jul. 2010.
doi:10.1109/TMTT.2010.2049917

47. Dudley, D. G., Mathematical Foundations for Electromagnetic Theory, Wiley-IEEE Press, New York, 1994.
doi:10.1109/9780470545232


© Copyright 2014 EMW Publishing. All Rights Reserved