PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 152 > pp. 17-31

GENERATION OF COMPLEX SOURCE POINT EXPANSIONS FROM RADIATION INTEGRALS (Invited Paper)

By E. Martini and S. Maci

Full Article PDF (573 KB)

Abstract:
This paper discusses methods for expanding fields radiated by arbitrary sourcesenclosed by a certain minimum sphere in termsof Complex Source Point (CSP) beams. Two different approaches are reviewed; the first one is based on a spectral radiation integral, where the Fourier-spectrum is obtained by far field matching. The second approach consists of two steps: first, the equivalence principle is applied to a sphere enclosing the real sources, and a continuous equivalent electric current distribution is obtained in terms of spherical waves; then, the continuous current is extended to complex space and its SW components are properly filtered and sampled to generate the discrete set of CSPs. In both cases, the final resultis a compact finite series representation with a number of terms that matches the degrees of freedom of arbitrary radiated fields;it is particularly efficient when the fields are highly directional and the observation domain is limited to a given angular sector. The fact that the CSPs rigorously respect Maxwell's equations ensures the validity of the expansion from near to far zone and allows one to incorporate the CSP representation in a generalized admittance matrix formalism for the analysis of complex problems.

Citation:
E. Martini and S. Maci, "Generation of Complex Source Point Expansions from Radiation Integrals (Invited Paper)," Progress In Electromagnetics Research, Vol. 152, 17-31, 2015.
doi:10.2528/PIER15011702
http://www.jpier.org/PIER/pier.php?paper=15011702

References:
1. Wylde, R. J., "Millimetre-wave Gaussian beam-mode optics and corrugated feed horns," IEE Proceedings H, Microwaves, Optics and Antennas, Vol. 131, No. 4, 258-262, Aug. 1984, Doi: 10.1049/ip-h-1.1984.0053.
doi:10.1049/ip-h-1.1984.0053

2. McEwan, N. J. and P. F. Goldsmith, "Gaussian beam techniques for illuminating reflector antennas," IEEE Trans. Antennas Propag., Vol. 37, No. 3, 297-304, Mar. 1989.
doi:10.1109/8.18725

3. Imbriale, W. A. and D. J. Hoppe, "Recent trends in the analysis of quasioptical systems," Millenium Conf. on Antennas Propag., Davos, Switzerland, 2000.

4. Withington, S., J. A. Murphy, and K. G. Isaak, "Representation of mirrors in beam waveguides as inclined phase-transforming surfaces," Infrared Phys. Technol., Vol. 36, No. 3, 723-734, Apr. 1995.
doi:10.1016/1350-4495(94)00047-O

5. Siegman, A., "Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions," J. Opt. Soc. Am., Vol. 63, 1093-1094, 1973.
doi:10.1364/JOSA.63.001093

6. Hern`andez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami (eds.), Localized Waves, Chapter 6, Wiley-Interscience, Hoboken, NJ, 2008.
doi:10.1002/9780470168981

7. Steinberg, B. Z., E. Heyman, and L. B. Felsen, "Phase space methods for radiation from large apertures," Radio Sci., Vol. 26, 219-227, 1991.
doi:10.1029/90RS01501

8. Shlivinski, A., E. Heyman, A. Boag, and C. Letrou, "A phase-space beam summation formulation for ultrawideband radiation: A multiband scheme," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2042-2056, Aug. 2004, Doi: 10.1109/TAP.2004.832513.
doi:10.1109/TAP.2004.832513

9. Shlivinski, A., E. Heyman, and A. Boag, "A phase-space beam summation formulation for ultrawideband radiation — Part II: A multiband scheme," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 948-957, Mar. 2005.
doi:10.1109/TAP.2004.842683

10. Shlivinski, A., E. Heyman, and A. Boag, "A pulsed beam summation formulation for short pulse radiation based on windowed radon transform (WRT) frames," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3030-3048, Sep. 2005.
doi:10.1109/TAP.2005.854550

11. Arnold, J. M., "Phase-space localization and discrete representation of wave fields," J. Opt. Soc. Am. A, Vol. 12, No. 1, 111-123, Jan. 1995.
doi:10.1364/JOSAA.12.000111

12. Chou, H.-T., P. H. Pathak, and R. J. Burkholder, "Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas," IEE Proc. Microw. Antennas Propag., Vol. 150, 177-183, 2003.
doi:10.1049/ip-map:20030506

13. Chou, H.-T. and P. H. Pathak, "Uniform asymptotic solution for electromagnetic reflection and diffraction of an arbitrary Gaussian beam by a smooth surface with an edge," Radio Sci., Vol. 32, No. 4, 1319-1336, Jul./Aug. 1997.
doi:10.1029/97RS00713

14. Skokic, S., M. Casaletti, S. Maci, and S Sorensen, "Complex conical beams for aperture field representations," IEEE Trans. Antennas Propag., Vol. 50, No. 2, 611-622, Feb. 2011, Doi: 10.1109/TAP.2010.2096379.
doi:10.1109/TAP.2010.2096379

15. Sarkar, T. K. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas and Propagation Magazine, Vol. 37, No. 1, 48-55, Feb. 1995, Doi: 10.1109/74.370583.
doi:10.1109/74.370583

16. Deschamps, G. A., "The Gaussian beam as a bundle of complex rays," Electron. Lett., Vol. 7, No. 23, 684-685, 1971.
doi:10.1049/el:19710467

17. Felsen, L. B., "Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams," Proc. Symp. Math., Vol. 18, 39-56, 1975.

18. Heyman, E. and L. B. Felsen, "Gaussian beam and pulsed-beam dynamics: Complex-source and complex-spectrum formulations within and beyond paraxial asymptotics," J. Opt. Soc. Am. A, Vol. 18, No. 7, 1588-1611, 2001.
doi:10.1364/JOSAA.18.001588

19. Yao, D., "Complex source representation of time harmonic radiation from a plane aperture," IEEE Trans. Antennas Propag., Vol. 43, No. 7, 720-723, Jul. 1995.

20. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed form spatial Green function for the microstrip substrate," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 3, 588-592, Mar. 1991.
doi:10.1109/22.75309

21. He, J., T. Yu, N. Geng, and L. Carin, "Method of moments analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium," Radio Sci., Vol. 35, No. 2, 305-313, 2000.
doi:10.1029/1999RS002230

22. Vipiana, F., A. Polemi, S. Maci, and G. Vecchi, "A mesh-adapted closed-form regular kernel for 3D singular integral equations," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1687-1698, Jun. 2008.
doi:10.1109/TAP.2008.923334

23. Bucci, O. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag., Vol. 37, No. 7, 918-926, 1989, Doi: 10.1109/8.29386.
doi:10.1109/8.29386

24. Bucci, O., "Computational complexity in the solution of large antenna and scattering problems," Radio Sci., Vol. 40, RS6S16, 2005, Doi: 10.1029/2004RS003196.

25. Stupfel, B. and Y. Morel, "Singular value decomposition of the radiation operator: Application to model-order and far-field reduction," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1605-1615, 2008, Doi: 10.1109/TAP.2008.923311.
doi:10.1109/TAP.2008.923311

26. Bogush, Jr., A. J. and R. E. Elkins, "Gaussian field expansions for large aperture antennas," IEEE Trans. Antennas Propag., Vol. 34, No. 2, 228-243, 1986.
doi:10.1109/TAP.1986.1143795

27. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

28. Matekovits, L., V. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2509-2521, 2007, Doi: 10.1109/TAP.2007.90407.
doi:10.1109/TAP.2007.904073

29. Casaletti, M., S. Maci, and G. Vecchi, "Diffraction-like synthetic functions to treat the scattering from large polyhedral metallic object," Appl. Comput. Electromagn. Soc., Vol. 24, No. 2, 161-173, 2009.

30. Tap, K., P. H. Pathak, and R. J. Burkholder, "Exact complex source point beam expansions for electromagnetic fields," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3379-3390, 2011, Doi: 10.1109/TAP.2011.2161438.
doi:10.1109/TAP.2011.2161438

31. Martini, E., G. Carli, and S. Maci, "A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.
doi:10.2528/PIERB10012110

32. Norris, A. N. and T. B. Hansen, "Exact complex source representations of time-harmonic radiation," Wave Motion, Vol. 25, 127-141, 1997.
doi:10.1016/S0165-2125(96)00036-4

33. Martini, E. and S. Maci, "A closed-form conversion from spherical-wave- to complex-point-source-expansion," Radio Sci., Vol. 46, RS0E22, 2011, Doi: 10.1029/2011RS004665.

34. Devaney, A. J. and E. Wolf, "Radiating and nonradiating classical current distributions and the fields they generate," Phys. Rev. D, Vol. 8, 1044-1047, 1973.
doi:10.1103/PhysRevD.8.1044

35. Sadourny, R., A. Arakawa, and Y. Mintz, "Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere," Mon. Wea. Rev., Vol. 96, 351-356, 1968, Doi: http://dx.doi.org/10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2.
doi:10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2

36. Rumsey, V. H., "Some new forms of Huygens’ principle," IRE Transactions on Antennas and Propagation, Vol. 7, No. 5, 103-116, Dec. 1959, Doi: 10.1109/TAP.1959.1144766.
doi:10.1109/TAP.1959.1144766

37. Harrington, R. F., Time Harmonic Electromagnetics, McGraw-Hill, New York, 1961.

38. Martini, E., G. Carli, and S. Maci, "An equivalence theorem based on the use of electric currents radiating in free space," IEEE Antennas Wireless Propag. Lett., Vol. 7, 421-424, 2008, Doi: 0.1109/LAWP.2008.2001764.
doi:10.1109/LAWP.2008.2001764

39. Hansen, J. E., Spherical Near-field Antenna Measurements, Peter Peregrinus, London, 1988.
doi:10.1049/PBEW026E

40. Lebedev, V. I., "A quadrature formula for the sphere of the 131st algebraic order of accuracy," Dokl. Math., Vol. 59, No. 3, 477-481, 1999.

41. Heilpern, T., E. Heyman, and V. Timchenko, "A beam summation algorithm for wave radiation and guidance in stratified media," J. Acoust. Soc. Am., Vol. 121, No. 4, 1856-1864, 2007, Doi: 10.1121/1.2537221.
doi:10.1121/1.2537221


© Copyright 2014 EMW Publishing. All Rights Reserved