PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 151 > pp. 73-81

PUSH-PULL PHENOMENON OF A DIELECTRIC PARTICLE IN A RECTANGULAR WAVEGUIDE

By N. K. Paul and B. A. Kemp

Full Article PDF (307 KB)

Abstract:
The electromagnetic force acting on a Rayleigh particle placed in a rectangular waveguide is studied. The particle is excited using the lowest order TE10 mode. It is determined that the particle is laterally trapped at the high intensity region of the electric field and either pushed away from or pulled toward the light source. This push-pull phenomenon depends on whether the frequency of the light wave is above or below the cutoff frequency (i.e. the particle can be pushed or pulled by tuning the frequency). While conventional optical tweezers rely on a balance of scattering and gradient force in the propagation direction, the phenomenon predicted here switches between the two forces near the lowest cutoff in a waveguide.

Citation:
N. K. Paul and B. A. Kemp, "Push-Pull Phenomenon of a Dielectric Particle in a Rectangular Waveguide," Progress In Electromagnetics Research, Vol. 151, 73-81, 2015.
doi:10.2528/PIER15022404
http://www.jpier.org/PIER/pier.php?paper=15022404

References:
1. Maxwell, J. C., A Treatise on Electricity and Magnetism, Volume II, Clarendon Press, Oxford, 1873.

2. Kemp, B. A., "Resolution of the Abraham-Minkowski debate: Implications for the electromagnetic wave theory of light in matter," J. Appl. Phys., Vol. 109, No. 1, 111101, 2011.
doi:10.1063/1.3582151

3. Milonni, P. W. and R. W. Boyd, "Momentum of light in a dielectric medium," Adv. Opt. Photon., Vol. 2, No. 4, 519-553, 2010.
doi:10.1364/AOP.2.000519

4. Barnett, S. M. and R. Loudon, "The enigma of optical momentum in a medium," Philos. Trans. R. Soc. A, Vol. 368, No. 1914, 927-939, 2010.
doi:10.1098/rsta.2009.0207

5. Pfeifer, R. N., T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Colloquium: Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys., Vol. 79, No. 4, 1197, 2007.
doi:10.1103/RevModPhys.79.1197

6. Gordon, J. P., "Radiation forces and momenta in dielectric media," Phys. Rev. A, Vol. 8, No. 1, 14-21, 1973.
doi:10.1103/PhysRevA.8.14

7. Harada, Y. and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun., Vol. 124, No. 5, 529-541, 1996.
doi:10.1016/0030-4018(95)00753-9

8. Kemp, B. A., T. M. Grzegorczyk, and J. A. Kong, "Lorentz force on dielectric and magnetic particles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 827-839, 2006.
doi:10.1163/156939306776143433

9. Maslov, A. V., "Optomechanical properties of a particle-waveguide system," Phys. Rev. A, Vol. 90, No. 3, 033825, 2014.
doi:10.1103/PhysRevA.90.033825

10. Ashkin, A., "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci., Vol. 94, No. 10, 4853-4860, 1997.
doi:10.1073/pnas.94.10.4853

11. Ashkin, A. and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, Vol. 235, No. 4795, 1517-1520, 1987.
doi:10.1126/science.3547653

12. Burns, M. M., J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett., Vol. 63, No. 12, 1233, 1989.
doi:10.1103/PhysRevLett.63.1233

13. Burns, M. M., J. M. Fournier, and J. A. Golovchenko, "Optical matter: Crystallization and binding in intense optical fields," Science, Vol. 249, No. 4970, 749-754, 1990.
doi:10.1126/science.249.4970.749

14. Ashkin, A., "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron., Vol. 6, No. 6, 841-856, 2000.
doi:10.1109/2944.902132

15. Dholakia, K. and P. Zemnek, "Colloquium: Gripped by light: Optical binding," Rev. Mod. Phys., Vol. 82, No. 2, 1767, 2010.
doi:10.1103/RevModPhys.82.1767

16. Grier, D. G., "A revolution in optical manipulation," Nature, Vol. 424, No. 6950, 810-816, 2003.
doi:10.1038/nature01935

17. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, New York, 1986.

18. Grier, D. G. and D. B. Ruffner, "Practical tractor beams," 10th International Conference on Laserlight and Interactions with Particles, ME-5.1-ME-5.4, Marseille, France, Aug. 25–29, 2014.

19. Grzegorczyk, T. M., B. A. Kemp, and J. A. Kong, "Stable optical trapping based on optical binding forces," Phys. Rev. Lett., Vol. 96, No. 11, 113903, 2006.
doi:10.1103/PhysRevLett.96.113903

20. Ahlawat, S., R. Dasgupta, and P. K. Gupta, "Optical trapping near a colloidal cluster formed by a weakly focused laser beam," J. Phy. D: Appl. Phys., Vol. 41, No. 10, 105107, 2008.
doi:10.1088/0022-3727/41/10/105107

21. Kemp, B. A., T. M. Grzegorczyk, and J. A. Kong, "Optical momentum transfer to absorbing Mie particles," Phys. Rev. Lett., Vol. 97, No. 13, 133902, 2006.
doi:10.1103/PhysRevLett.97.133902


© Copyright 2014 EMW Publishing. All Rights Reserved