Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 153 > pp. 1-10


By M. M. Tahseen and A. A. Kishk

Full Article PDF (633 KB)

A Circularly Polarized (CP) high efficiency wide band Reflectarray (RA) antenna is designed for Ka-band using cross bow-tie elements. The reflected wave phase curve is obtained by anti-clockwise bowtie rotation. The linear phase curve with complete 360° degree is obtained when left-hand circularly polarized (LHCP) is incident normally in unit cell environment. The proposed method provides high gain, high aperture efficiency, wideband axial ratio (AR), in circularly polarized bow-tie RA using multiple copies of unit cell to form 25*25 antenna array. Before designing RA, the unitcell is analyzed, for oblique incidence to predict its bandwidth. The proposed antenna provided good performance in terms of Half Power Beam width HPBW, Side Love Level (SLL), cross polarization, gain bandwidth and AR bandwidth. A 25*25 bow-tie RA antenna provides the highest aperture efficiency of 57%, HPBW of 9.0 degrees, SLL -19 dB, cross polarization -27 dB. A 1-dB gain bandwidth of 32.5%, 3-dB gain bandwidth of 51.4% and 1.5-dB AR bandwidth of 32.9% while 3-dB AR bandwidth of 48.7% is achieved in simulation. These results are validated through fabricated cross bow-tie RA, and the measurements make good agreement with simulation results.

M. M. Tahseen and A. A. Kishk, "Ka-Band Circularly Polarized High Efficiency Wide Band Reflectarray Using Cross Bow-Tie Elements," Progress In Electromagnetics Research, Vol. 153, 1-10, 2015.

1. Huang, J. and J. A. Encircle, Reflectarray Antennas, John Wiley & Sons Inc., Hobo Ken, NJ, 2007.

2. Polar, D. M., S. D. Tarkington, and H. D. Rigors, "Design of millimeter wave micro strip reflectarrays," EERIE Transactions on Antennas and Propagation, Vol. 45, No. 2, 287-296, 1997.

3. Encinar, J. A., "Design of two-layer printed reflectarray using patches of variable size," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 10, 1403-1410, 2001.

4. Haung, J., "Analysis of microstrip reflectarray antenna for micro spacecraft application," The Telecommunications and Data Acquisition Report, P153-P173, 1995.

5. Chaharmir, M. R., J. Shaker, N. Gagnon, and D. Lee, "Design of broadband, single layer dual-band large reflectarray using multi open loop elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2875-2883, Sep. 2010.

6. Pozar, D. M., "Bandwidth of reflectarrays," IEEE Electronics Letters, Vol. 39, No. 21, 1490-1491, Oct. 2003.

7. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1662-1664, Jul. 2003.

8. Deguchi, H., K. Mayumi, M. Tsuji, and T. Nishimura, "Broadband single-layer triple-resonance microstrip reflectarray antennas," Proc. EuMA, 29-32, Italy, 2009.

9. Hasani, H., M. Kamyab, and A. Mirkamali, "Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 156-158, 2010.

10. Haug, J. and R. J. Pozorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 5, 650-656, May 1998.

11. Han, C., C. Rodenbeck, J. Haung, and K. Chang, "A C/Ka dual frequency dual layer circularly polarized reflectarray antenna with microstrip ring elements," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2871-2875, 2004.

12. Mahmoud, A. and A. A. Kishk, "Ka-band dual mode circularly polarized reflectarray," IEEE Conference ANTEM, 1-2, Victoria, Canada, 2014.

13. Munson, R., H. A. Haddad, and J. W. Hanlen, "Microstrip reflectarray for satellite communication and radar cross-section enhancement or reduction,", U.S. Patent 4684952, Washington DC, Aug. 1987.

14. Bialkowski, M. E., H. J. Song, K. M. Luk, and C. H. Chan, "Theory of an active transmit/reflected array of patch antennas operating as a spatial power combiner," IEEE Antennas Propag. Society Int. Symp. Digest, Vol. 4, 764-767, Jul. 2001.

15. Carrasco, E., M. Barba, and J. A. Encinar, "Aperture-coupled reflectarray element with wide range of phase delay," IEEE Electron. Lett., Vol. 42, No. 12, 667-668, Jun. 2006.

16. Carrasco, E., M. Barba, and J. A. Encinar, "Reflectarray element based on aperture-coupled patches with slots and lines of variable length," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 820-825, Mar. 2007.

17. Malfajani, S. and Z. Atlasbaf, "Design and implementation of a broadband single layer circularly polarized reflectarray antenna," IEEE Antennas Wireless Propag. Lett., Vol. 11, 973-976, Aug. 2012.

18. Chaharmir, R. and J. Shaker, "FSS-backed reflectarray with broadband square loop cell elements for dual band applications," IEEE Antennas Propag. Society Int. Symp. Digest, 1-4, Jul. 2008.

19. Wu, Z. H., W. X. Zhang, Z. G. Liu, and W. Shen, "Circularly polarised reflectarray with linearly polarized feed," Electronics Letters, Vol. 41, No. 7, 387-388, Mar. 31, 2005.

20. Guo, L., P. Tan, and T. Chio, "A simple approach to achieve polarization diversity in broadband reflect-arrays using single-layered rectangular patch elements," Microwave and Optical Technology Letters, Vol. 47, No. 2, 305-310, Feb. 2015.

© Copyright 2014 EMW Publishing. All Rights Reserved