Two basic classes of electromagnetic medium, recently defined as P and Q medium, are generalized to define the class of PQ media. Plane wave propagation in the general PQ medium is studied and the quartic dispersion equation is derived in analytic form applying four-dimensional dyadic formalism. The result is verified by considering various special cases of PQ media for which the dispersion equation is either decomposed to two quadratic equations or is identically satisfied (media with no dispersion equation). As a numerical example, the dispersion surface of a PQ medium with non-decomposable dispersion equation is considered.
2. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Ed., University Press, Oxford, 1995.
3. Hehl, F. W. and Yu. N. Obukhov, Foundations on Classical Electrodynamics, Birkhäuser, Boston, 2003.
doi:10.1007/978-1-4612-0051-2
4. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048
5. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.
doi:10.1002/0471723096
6. Lindell, I. V., Multiforms, Dyadics, and Electromagnetic Media, Wiley, Hoboken, N.J., 2015.
7. Warnick, K. F. and P. Russer, "Differential forms and electromagnetic field theory (invited paper)," Progress In Electromagnetics Research, Vol. 148, 83-112, 2014.
doi:10.2528/PIER14063009
8. Lindell, I. V. and A. Favaro, "Decomposition of electromagnetic Q and P media," Progress In Electromagnetics Research B, Vol. 63, 79-93, 2015.
doi:10.2528/PIERB15030901
9. Lindell, I. V., L. Bergamin, and A. Favaro, "The class of electromagnetic P-media and its generalization," Progress In Electromagnetics Research B, Vol. 28, 143-162, 2011.
10. Lindell, I. V. and K. H. Wallén, "Differential-form electromagnetics and bi-anisotropic Q-media," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 957-968, 2004.
doi:10.1163/156939304323105772
11. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002
12. Lindell, I. V. and A. Favaro, "Electromagnetic media with no dispersion equation," Progress In Electromagnetics Research B, Vol. 51, 269-289, 2013.
doi:10.2528/PIERB13033107
13. Lindell, I. V. and K. H. Wallén, "Generalized Q-media and field decomposition in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1045-1056, 2004.
doi:10.1163/1569393042955397
14. Lindell, I. V., L. Bergamin, and A. Favaro, "Decomposable medium condition in four-dimensional representation," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 367-376, Jan. 2011.
doi:10.1109/TAP.2011.2167937
15. Capolino, F. and ed., Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, FL, 2009.
doi:10.1201/9781420054262
16. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Arbitrary electromagnetic conductor boundaries using Faraday rotation in a grounded ferrite slab," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 11, 2781-2793, 2010.
doi:10.1109/TMTT.2010.2078010
17. El-Maghrabi, H. M., A. M. Attiya, and E. A. H. Hashish, "Design of a perfect electromagnetic conductor (PEMC) boundary by using periodic patches," Progress In Electromagnetics Research M, Vol. 16, 159-169, 2011.
doi:10.2528/PIERM10112201
18. Zaluski, D., D. Muha, and S. Hrabar, "DB boundary based on resonant metamaterial inclusions," Metamaterials'2011, 820-822, Barcelona, Oct. 2011.
19. Zaluski, D., S. Hrabar, and D. Muha, "Practical realization of DB metasurface," Appl. Phys. Lett., Vol. 104, 234106, 2014.
doi:10.1063/1.4883405