Vol. 154

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Circularly-Polarized Metasurfaced Dipole Antenna with Wide Axial-Ratio Beamwidth and RCS Reduction Functions

By Chen Chen, Zhuo Li, Liangliang Liu, Jia Xu, Pingping Ning, Bingzheng Xu, Xinlei Chen, and Chang Qing Gu
Progress In Electromagnetics Research, Vol. 154, 79-85, 2015


A new circularly-polarized metasurfaced dipole antenna (MSDA) with wide axial-ratio(AR) beamwidth and radar cross section (RCS) reduction properties is proposed and studied in this paper. This antenna is a quite simple half-wavelength linear dipole right above a metasurface which consists of 9 double-head arrow-shaped unit cells arranged in a 3×3 layout. By cautiously choosing the geometrical parameters of the metasurface and tuning the distance between the dipole and the metasurface, the whole structure turns out to be a circularly-polarized antenna with RCS reduction feature. Simulation results show that the MSDA in circular polarization achieves an operating bandwidth of 410 MHz and a wide AR beamwidth of 123˚ and 90˚ in φ = 0˚ and φ = 90˚ planes respectively, together with a maximum RCS reduction of 10.4 dB in the whole operating band.


Chen Chen, Zhuo Li, Liangliang Liu, Jia Xu, Pingping Ning, Bingzheng Xu, Xinlei Chen, and Chang Qing Gu, "A Circularly-Polarized Metasurfaced Dipole Antenna with Wide Axial-Ratio Beamwidth and RCS Reduction Functions," Progress In Electromagnetics Research, Vol. 154, 79-85, 2015.


    1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, New Jersey, John Wiley & Sons, Hoboken, 2005.

    2. Chin, J. Y., M. Lu, and T. J. Cui, "Metamaterial polarizers by electric-field-coupled resonators," Applied Physics Letters, Vol. 93, No. 25, 251903, 2008.

    3. Holloway, C. L., A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, No. 2, 100-112, 2009.

    4. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.

    5. Chen, H. Y., J. F. Wang, H. Ma, S. B. Qu, Z. Xu, A. X. Zhang, M. B. Yan, and Y. F. Li, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, No. 15, 154504, 2014.

    6. Chen, H. Y., H. Ma, S. B. Qu, J. F. Wang, Y. F. Li, H. Y. Yuan, and Z. Xu, "Ultra-wideband polarization conversion metasurfaces," 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 1009-1011, 2014.

    7. Zhang, W., W. M. Zhu, E. E. M. Chia, Z. X. Shen, H. Cai, Y. D. Gu, W. Ser, and A. Q. Liu, "A pseudo-planar metasurface for a polarization rotator," Optics Express, Vol. 22, No. 9, 10446-10454, 2014.

    8. Caputo, J. G., I. Gabitov, and A. I. Maimistov, "Polarization rotation by an rf-SQUID metasurface," Physical Review B, Vol. 91, No. 11, 115430, 2015.

    9. Chung, K. L. and S. Chaimool, "Diamagnetic metasurfaces for performance enhancement of microstrip patch antennas," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 48-42, 2011.

    10. Chung, K. L. and S. Kharkovsky, "Metasurface-loaded circularly-polarized slot antenna with high front-to-back ratio," Electronics Letters, Vol. 49, No. 16, 979-981, 2013.

    11. Chamok, N., T. K. Anthony, S. J. Weiss, and M. Ali, "Ultra-thin UHF broadband antenna on a non-uniform aperiodic (NUA) metasurface," IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, 167-180, 2015.

    12. Huang, C., W. B. Pan, X. L. Ma, and X. G. Luo, "Wideband radar cross-section reduction of a stacked patch array antenna using metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1369-1372, 2015.

    13. Wu, Z., H. X. Liu, Y. Shi, and L. Li, "Metamaterial-inspired wideband low-profile circularly polarized antenna," 2015 IEEE International Conference on Computational Electromagnetics (ICCEM), 45-46, 2015.

    14. Rao, B. R., W. Kunysz, R. Fante, and K. McDonald, GPS/GNSS Antennas, Artech House, Norwood, MA, USA, 2013.

    15. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized patch antenna using a metamaterial reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.

    16. Zhu, H. L., K. L. Chung, X. L. Sun, S. W. Cheung, and T. I. Yuk, "CP metasurfaced antennas excited by LP sources," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

    17. Zhu, H. L., S. W. Cheung, K. L. Chung, and T. I. Yuk, "Linear-to-circular polarization conversion using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4615-4623, 2013.

    18. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Optical Materials Express, Vol. 4, No. 8, 1717-1724, 2014.