Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 153 > pp. 123-131


By Z. Yong, S. Zhang, Y. Dong, and S. He

Full Article PDF (512 KB)

We propose a novel design of broadband plasmonic nanoantenna that is suitable for fluorescence and Raman enhancement. The structure consists of a gold nanoring and bowties at the center. We numerically investigate the near field and far field performance by employing the finite-difference time-domain method. High Purcell enhancement and large SERS are demonstrated in a record wide spectral bandwidth of 700 nm based on a single emitter-antenna configuration. Moreover, unlike a traditional antenna design, the proposed nanoantenna has low heat generation and high field enhancement at the gap simultaneously, when operating off resonance.

Z. Yong, S. Zhang, Y. Dong, and S. He, "Broadband Nanoantennas for Plasmon Enhanced Fluorescence and Raman Spectroscopies," Progress In Electromagnetics Research, Vol. 153, 123-131, 2015.

1. McCreery, R. L., Raman Spectroscopy for Chemical Analysis, Wiley, New York, 2005.

2. Movasaghi, Z., S. Rehman, and I. U. Rehman, "Raman spectroscopy of biological tissues," Applied Spectroscopy Reviews, Vol. 42, No. 5, 493-541, 2007.

3. Lakowicz, J. R., "Radiative decay engineering: Biophysical and biomedical applications," Analytical Biochemistry, Vol. 298, No. 1, 1-24, 2001.

4. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, 2012.

5. Otto, A., "The `chemical' (electronic) contribution to surface-enhanced Raman scattering," Journal of Raman Spectroscopy, Vol. 36, 497-509, 2005.

6. Gabudean, A. M., M. Focsan, and S. Astilean, "Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS)," The Journal of Physical Chemistry C, Vol. 116, No. 22, 12240-12249, 2012.

7. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

8. Biagioni, P., J. S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, Vol. 75, No. 2, 024402, 2012.

9. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Physical Review Letters, Vol. 96, No. 11, 113002, 2006.

10. Giannini, V., A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters," Chemical Reviews, Vol. 111, No. 6, 3888-3912, 2011.

11. Kinkhabwala, A., Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, Vol. 3, No. 11, 654-657, 2009.

12. Fromm, D. P., A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single ``bowtie'' nanoantennas resonant in the visible," Nano Letters, Vol. 4, No. 5, 957-961, 2004.

13. Mohammadi, A., V. Sandoghdar, and M. Agio, "Gold nanorods and nanospheroids for enhancing spontaneous emission," New Journal of Physics, Vol. 10, No. 10, 105015, 2008.

14. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. G. De Abajo, "Optical properties of gold nanorings," Physical Review Letters, Vol. 90, No. 5, 057401, 2003.

15. Rakovich, A., P. Albella, and S. A. Maier, "Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities," ACS Nano, Vol. 9, No. 3, 2648-2658, 2015.

16. Urban, A. S., X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, and N. J. Halas, "Three-dimensional plasmonic nanoclusters," Nano Letters, Vol. 13, No. 9, 4399-4403, 2013.

17. Volpe, G., G. Volpe, and R. Quidant, "Fractal plasmonics: Subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet," Optics Express, Vol. 19, No. 4, 3612-3618, 2011.

18. Chen, T. L., D. J. Dikken, J. C. Prangsma, F. Segerink, and J. L. Herek, "Characterization of Sierpinski carpet optical antenna at visible and near-infrared wavelengths," New Journal of Physics, Vol. 16, No. 9, 093024, 2014.

19. Tok, R. U. and K. Sendur, "Plasmonic spiderweb nanoantenna surface for broadband hotspot generation," Optics Letters, Vol. 39, No. 24, 6977-6980, 2014.

20. Ünlü, E. S., R. U. Tok, and K. Sendur, "Broadband plasmonic nanoantenna with an adjustable spectral response," Optics Express, Vol. 19, No. 2, 1000-1006, 2011.

21. Boriskina, S. V. and L. Dal Negro, "Multiple-wavelength plasmonic nanoantennas," Optics Letters, Vol. 35, No. 4, 538-540, 2010.

22. Blanchard, R., S. V. Boriskina, P. Genevet, M. A. Kats, and F. Capasso, "Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point," Optics Express, Vol. 19, No. 22, 22113-22124, 2011.

23. Pavlov, R. S., A. G. Curto, and N. F. van Hulst, "Log-periodic optical antennas with broadband directivity," Optics Communications, Vol. 285, No. 16, 3334-3340, 2012.

24. Navarro-Cia, M. and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS Nano, Vol. 6, No. 4, 3537-3544, 2012.

25. Yang, J., F. Kong, K. Li, and S. Sheng, "Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor," Optics Communications, Vol. 342, 230-237, 2015.

26. Soliman, E. A., "Wideband nanocrescent plasmonic antenna with engineered spectral response," Microwave and Optical Technology Letters, Vol. 55, No. 3, 624-629, 2013.

27. Aouani, H., M. Rahmani, H. Sípová, V. Torres, K. Hegnerová, M. Beruete, and S. A. Maier, "Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies," The Journal of Physical Chemistry C, Vol. 117, No. 36, 18620-18626, 2013.

28. Smolyaninov, A., L. Pang, L. Freeman, M. Abashin, and Y. Fainman, "Broadband metacoaxial nanoantenna for metasurface and sensing applications," Optics Express, Vol. 22, No. 19, 22786-22793, 2014.

29. Baffou, G., R. Quidant, and F. J. García de Abajo, "Nanoscale control of optical heating in complex plasmonic systems," ACS Nano, Vol. 4, No. 2, 709-716, 2010.

30. http://www.lumerical.com.

31. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.

32. Govorov, A. O. and H. H. Richardson, "Generating heat with metal nanoparticles," Nano Today, Vol. 2, No. 1, 30-38, 2007.

33. Purcell, E. M., "Spontaneous transition probabilities in radio-frequency spectroscopy," Phys. Rev., Vol. 69, 681, 1946.

34. Sun, G., J. B. Khurgin, and R. A. Soref, "Practical enhancement of photoluminescence by metal nanoparticles," Appl. Phys. Lett., Vol. 94, No. 10, 101103, 2009.

35. Rogobete, L., F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Optics Letters, Vol. 32, No. 12, 1623-1625, 2007.

36. Chu, Y., M. G. Banaee, and K. B. Crozier, "Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies," ACS Nano, Vol. 4, No. 5, 2804-2810, 2010.

37. Lin, J., Y. Zhang, J. Qian, and S. He, "A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance," Laser Photon. Rev., Vol. 8, No. 4, 610-616, 2014.

38. Palomba, S., M. Danckwerts, and L. Novotny, "Nonlinear plasmonics with gold nanoparticle antennas," Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 11, 114030, 2009.

39. Noginov, M. A., G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature, Vol. 460, 1110-1112, 2009.

© Copyright 2014 EMW Publishing. All Rights Reserved