PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 154 > pp. 35-50

SQUEEZING MAXWELL'S EQUATIONS INTO THE NANOSCALE (Invited Paper)

By D. M. Solis, J. M. Taboada, L. Landesa, J. L. Rodriguez, and F. Obelleiro

Full Article PDF (850 KB)

Abstract:
The plasmonic behavior of nanostructured materials has ignited intense research for the fundamental physics of plasmonic structures and their cutting edge applications concerning the fields of nanoscience and biosensing. The optical response of plasmonic metals is generally well-described by classical Maxwell's Equations (ME). Thus, the understanding of plasmons and the design of plasmonic nanostructures can therefore directly benefit from lastest advances achieved in classic research areas such as computational electromagnetics. In this context, this paper is devoted to review the most recent advances in nanoplasmonic modeling, related with the latest breakthroughs in surface integral equation (SIE) formulations derived from ME. These works have extended the scope of application of Maxwell's Equations, from microwave/milimeter waves to infrared and optical frequency bands, in the emerging fields of nanoscience and medical biosensing.

Citation:
D. M. Solis, J. M. Taboada, L. Landesa, J. L. Rodriguez, and F. Obelleiro, "Squeezing Maxwell's Equations into the Nanoscale (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 35-50, 2015.
doi:10.2528/PIER15110103
http://www.jpier.org/PIER/pier.php?paper=15110103

References:
1., "Nature milestones: Photons supplement,", 2010, http://www.nature.com/milestones/photons.

2. O’Neal, D. P., L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Lett., Vol. 209, 171-176, 2004.

3. Oulton, R. F., V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature, Vol. 461, 629-632, 2009.

4. Alvarez-Puebla, R. A. and L. M. Liz-Marzn, "SERS-based diagnosis and biodetection," Small, Vol. 6, No. 5, 604-610, 2010.

5. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater., Vol. 9, 205-213, 2010.

6. Noginov, M. A., G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature, Vol. 460, 1110-1113, 2009.

7. Akimov, A. V., A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, Vol. 450, 402-406, 2007.

8. Alu, A. and N. Engheta, "Wireless at the nanoscale: Optical interconnects using matched nanoantennas," Phys. Rev. Lett., Vol. 104, 213902, 2010.

9. Atwater, H. A., "The promise of plasmonics," Scientific American, Vol. 296, No. 4, 56-62, 2007.

10. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2010.

11. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1962.

12. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.

13. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1985.

14. García de Abajo, F. J., "Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides," J. Phys. Chem. C, Vol. 112, No. 46, 17983-17987, 2008.

15. Draine, B. T., "The discrete-dipole approximation and its application to interstellargraphite grains," Astrophys. J., Vol. 333, 848-872, 1988.

16. Taflove, A. and M. E. Brodwin, "Numerical solution of steadystate electromagnetic scattering problems using the timedependent Maxwell’s equations," IEEE Trans. Microwave Theory Tech., Vol. 23, 623-630, 1975.

17. Hao, F., C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett., Vol. 7, 729-732, 2007.

18. Jin, J., The Finite Element Method in Electromagnetics, Wiley, New York, 2002.

19. Zhang, S., K. Bao, N. J. Halas, H. Xu, and P. Nordlander, "Substrate-induced fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed," Nano Lett., Vol. 11, 1657-1663, 2011.

20. Harrington, R. F., Field Computation by Moment Method, IEEE Press, New York, 1993.

21. Taboada, J. M., J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, "Method-of-moments formulation for the analysis of plasmonic nano-optical antennas," J. Opt. Soc. Am. A, Vol. 28, 1341-1348, 2011.

22. Solís, D. M., J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, "Toward ultimate nanoplasmonics modeling," ACS Nano, Vol. 8, 7559-7570, 2014.

23. Hamon, C., S. M. Novikov, L. Scarabelli, D. M. Solís, T. Altantzis, S. Bals, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, "Collective plasmonic properties in few-layer gold nanorod supercrystals," ACS Photonics, Vol. 2, No. 10, 1482-1488, 2015.

24. Araújo, M. G., J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, "Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers," Optics Express, Vol. 20, No. 8, 9161-9171, 2012.

25. Solís, D. M., J. M. Taboada, and F. Obelleiro, "Surface integral equation method of moments with multiregion basis functions applied to plasmonics," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2141-2152, 2015.

26. Solís, D. M., J. M. Taboada, O. Rubiños-López, and F. Obelleiro, "Improved combined tangential formulation for electromagnetic analysis of penetrable bodies," JOSA B, Vol. 32, No. 9, 1780-1787, 2015.

27. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, 1488-1493, 1997.

28. Donepudi, K. C., J.-M. Jin, and W. C. Chew, "A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2814-2821, 2003.

29. Araújo, M. G., D. M. Solís, J. Rivero, J. M. Taboada, and F. Obelleiro, "Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm," Optics Letters, Vol. 37, No. 3, 416-418, 2012.

30. Taboada, J. M., M. G. Ara´ujo, J. M. B´ertolo, L. Landesa, F. Obelleiro, and J. L. Rodrguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics (Invited Paper)," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.

31. Araújo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bértolo, L. Landesa, J. Rivero, and J. L. Rodrguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.

32. Taboada, J. M., M. G. Araújo, F. Obelleiro, J. L. Rodríguez, and L. Landesa, "MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics," Proceedings of the IEEE, Special issue on Large Scale Electromagnetic Computation for Modeling and Applications, Vol. 101, No. 2, 350-363, 2013.

33. Solís, D. M., J. M. Taboada, M. G. Araújo, F. Obelleiro, and J. O. Rubiños-López, "Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques," Opt. Commun., Vol. 301-302, 6166, 2013.

34. Obelleiro, F., J. M. Taboada, D. M. Solís, and L. Bote, "Directive antenna nanocoupler to plasmonic gap waveguides," Opt. Lett., Vol. 38, 1630-1632, 2013.

35. Solís, D. M., J. M. Taboada, F. Obelleiro, and L. Landesa, "Optimization of an optical wireless nanolink using directive nanoantennas," Opt. Express, Vol. 21, 2369-2377, 2013.

36. Farrokhtakin, E., D. Rodríguez-Fernndez, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, "Radial growth of plasmon coupled gold nanowires on colloidal templates," Journal of Colloid and Interface Science, Vol. 449, 87-91, 2015.

37. Fernández-López, C., L. Polavarapu, D. M. Solís, J. M. Taboada, F. Obelleiro, R. Contreras-Caceres, I. Pastoriza-Santos, and J. Perez-Juste, "Gold nanorods-pNIPAM hybrids with reversible plasmon coupling: Synthesis, modeling and sers properties," ACS Applied Materials & Interfaces, Vol. 7, No. 23, 12530-12538, 2015.

38. Shiohara, A., S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, "Plasmon modes and hot spots in gold nanostarsatellite clusters," Journal of Physical Chemistry C, Vol. 119, No. 20, 10836-10843, 2015.

39. Drude, P., "Zur elektronentheorie der metalle," Ann. Phys., Vol. 306, No. 3, 566-613, 1900.

40. Vial, A., A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B, Vol. 71, No. 8, 085416, 2005.

41. Ritchie, R. H., "Plasma losses by fast electrons in thin films," Phys. Rev., Vol. 106, No. 5, 874-881, 1957.

42. Ylä-Oijala, P., M. Taskinen, and S. Järvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Sci., Vol. 40, No. 6, 1-19, 2005.

43. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.

44. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propag., Vol. 32, 276-281, 1984.

45. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave Opt. Technol. Lett., Vol. 14, 9-14, 1997.

46. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Greens function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., Vol. 41, 1448-1455, 1993.

47. Ylä-Oijala, P. and M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and nxRWG functions," IEEE Trans. Antennas Propag., Vol. 51, 1837-1846, 2003.

48. Kahan, W., "Branch cuts for complex elementary functions, or much ado about nothing’s sign bit," The State of the Art in Numerical Analysis, A. Iserles and M. J. D. Powell, eds., Clarendon Press, Oxford, 1987.

49. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E Stat. Nonlin. Soft Matter Phys., Vol. 64, No. 5, 056625, 2001.

50., Standard C++ Library Reference, IBM Corp., 2005.

51. Obelleiro, F., J. M. Taboada, and M. G. Araújo, "Calculation of wave propagation parameters in generalized media," Microwave Opt. Technol. Lett., Vol. 54, No. 12, 2731-2736, 2012.

52. Putnam, J. M. and L. N. Medgyesi-Mitschang, "Combined field integral equation formulation for inhomogneous two- and three-dimensional bodies: The junction problem," IEEE Trans. Antennas Propagat., Vol. 39, No. 5, 667-672, 1991.

53. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.

54. Coifman, R., V. Rokhlin, and S. Wanzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, 7-12, 1993.

55. Waltz, C., K. Sertel, M. A. Carr, B. C. Usner, and J. L. Volakis, "Massively parallel fast multipole method solutions of large electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1810-1816, 2007.

56. Sols, D. M., M. G. Arajo, L. Landesa, S. Garca, J. M. Taboada, and F. Obelleiro, "MLFMA-MoM for solving the scattering of densely packed plasmonic nanoparticle assemblies," IEEE Photonics Journal, Vol. 7, No. 3, 4800709, 2015.

57. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.

58. Philipse, A. P. and A. Vrij, "Preparation and properties of nonaqueous model dispersions of chemically modified, charged silica spheres," J. Colloid Interface Sci., Vol. 128, 121-136, 1989.

59. Mie, G., "Beitrge zur optik truber medien, speziell kolloidaler metallsungen," Ann. Phys. Leipzig, Ger., Vol. 25, 377-445, 1908.

60. Metiu, H., "Surface enhanced spectroscopy," Prog. Surf. Sci., Vol. 17, 153-320, 1984.

61. Moskovits, M., "Surface-enhanced spectroscopy," Rev. Mod. Phys., Vol. 57, 783, 1985.

62. Novotny, L. and B. Hecht, Principles of Nano-Optics, Cambridge Univ. Press, Cambridge, 2006.

63. Schlücker, S., "Surface-enhanced raman spectroscopy: Concepts and chemical applications," Angew. Chem., Int. Ed., Vol. 53, 4756-4795, 2014.

64. Alvarez-Puebla, R. A., A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carb-Argibay, N. Pazos-Prez, L. Vigderman, E. R. Zubarev, N. A. Kotov, and L. M. Liz-Marzn, "Gold nanorods 3D-supercrystals as SERS substrates for the rapid detection of scrambled prions," Proc. Natl. Acad. Sci. U.S.A., Vol. 108, 8157-8161, 2011.

65. Alvarez-Puebla, R. A. and L. M. Liz-Marzn, "SERS detection of small inorganic molecules and ions," Angew. Chem. Int. Ed., Vol. 51, 11214-11223, 2012.


© Copyright 2014 EMW Publishing. All Rights Reserved