PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 154 > pp. 143-162

ADAPTIVE AND PARALLEL SURFACE INTEGRAL EQUATION SOLVERS FOR VERY LARGE-SCALE ELECTROMAGNETIC MODELING AND SIMULATION (Invited Paper)

By B. MacKie-Mason, A. Greenwood, and Z. Peng

Full Article PDF (5,423 KB)

Abstract:
This work investigates an adaptive, parallel and scalable integral equation solver for very large-scale electromagnetic modeling and simulation. A complicated surface model is decomposed into a collection of components, all of which are discretized independently and concurrently using a discontinuous Galerkin boundary element method. An additive Schwarz domain decomposition method is proposed next for the efficient and robust solution of linear systems resulting from discontinuous Galerkin discretizations. The work leads to a rapidly-convergent integral equation solver that is scalable for large multi-scale objects. Furthermore, it serves as a basis for parallel and scalable computational algorithms to reduce the time complexity via advanced distributed computing systems. Numerical experiments are performed on large computer clusters to characterize the performance of the proposed method. Finally, the capability and benefits of the resulting algorithms are exploited and illustrated through different types of real-world applications on high performance computing systems.

Citation:
B. MacKie-Mason, A. Greenwood, and Z. Peng, "Adaptive and Parallel Surface Integral Equation Solvers for Very Large-Scale Electromagnetic Modeling and Simulation (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 143-162, 2015.
doi:10.2528/PIER15113001
http://www.jpier.org/PIER/pier.php?paper=15113001

References:
1. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

2. Nédélec, J.-C., Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer-Verlag, Berlin, Germany, 2001.
doi:10.1007/978-1-4757-4393-7_1

3. Buffa, A., R. Hiptmair, T. von Petersdorff, and C. Schwab, "Boundary element methods for Maxwell equations on Lipschitz domains," Numer. Math., Vol. 95, 459-485, 2003.
doi:10.1007/s00211-002-0407-z

4. Buffa, A. and R. Hiptmair, "Regularized combined field integral equations," Numer. Math., Vol. 100, 1-19, 2005.
doi:10.1007/s00211-004-0579-9

5. Tzoulis, A. and T. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Trans. Antennas and Propagation, Vol. 53, 3358-3366, Oct. 2005.

6. Andriulli, F., K. Cools, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas and Propagation, Vol. 56, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788

7. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool Publishers, San Rafael, CA, USA, 2008.

8. Wang, X.-C., Z. Peng, and J.-F. Lee, "Multi-solver domain decomposition method for modeling EMC effects of multiple antennas on a large air platform," IEEE Trans. Electromagnetic Compatibility, Vol. 54, 375-388, Apr. 2012.
doi:10.1109/TEMC.2011.2161871

9. Hesford, A. J. and W. C. Chew, "On preconditioning and the eigensystems of electromagnetic radiation problems," IEEE Trans. Antennas and Propagation, Vol. 56, 2413-2420, Aug. 2008.
doi:10.1109/TAP.2008.926783

10. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

11. Peng, Z., K.-H. Lim, and J.-F. Lee, "Non-conformal domain decomposition methods for solving large multi-scale electromagnetic scattering problems," Proceedings of IEEE, Vol. 101, No. 2, 298-319, 2013.
doi:10.1109/JPROC.2012.2217931

12. Li, M.-K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antennas and Propagation, Vol. 56, 2389-2397, Aug. 2008.
doi:10.1109/TAP.2008.926785

13. Solis, D. M., J. M. Taboada, F. Obelleiro, and L. Landesa, "Optimization of an optical wireless nano link using directive nanoantennas," Optics Express, Vol. 21, No. 2, 2369-2377, 2013.
doi:10.1364/OE.21.002369

14. Solis, D. M., J. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. G. de Abajo, "Toward ultimate nanoplasmonics modeling," ACS Nano, Vol. 8, No. 8, 7559-7570, 2014.
doi:10.1021/nn5037703

15. Velamparambil, S., W. C. Chew, and J. Song, "10 million unknowns: Is it that big? [Computational electromagnetics]," IEEE Antennas and Propagation Magazine, Vol. 45, 43-58, Apr. 2003.
doi:10.1109/MAP.2003.1203119

16. Ergül, Ö. and L. Gürel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems," IEEE Trans. Antennas and Propagation, Vol. 56, No. 8, 2335-2345, 2008.
doi:10.1109/TAP.2008.926757

17. Pan, X.-M., W.-C. Pi, M.-L. Yang, Z. Peng, and X.-Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas and Propagation, Vol. 60, 2571-2574, May 2012.
doi:10.1109/TAP.2012.2189746

18. Michiels, B., J. Fostier, I. Bogaert, and D. de Zutter, "Full-wave simulations of electromagnetic scattering problems with billions of unknowns," IEEE Trans. Antennas and Propagation, Vol. 63, No. 2, 796-799, 2015.
doi:10.1109/TAP.2014.2380438

19. Taboada, J., et al., "High scalability FMM-FFT electromagnetic solver for supercomputer systems," IEEE Antennas and Propagation Magazine, Vol. 51, No. 6, 20-28, 2009.
doi:10.1109/MAP.2009.5433091

20. Wei, F. and A. E. Yilmaz, "A hybrid message passing/shared memory parallelization of the adaptive integral method for multi-core clusters," Parallel Computing, Vol. 37, No. 6, 279-301, 2011.
doi:10.1016/j.parco.2011.03.006

21. Wei, F. and A. Yilmaz, "A more scalable and efficient parallelization of the adaptive integral method - Part I: Algorithm," IEEE Trans. Antennas and Propagation, Vol. 62, 714-726, Feb. 2014.
doi:10.1109/TAP.2013.2291559

22. Zhang, Y., Z. Lin, X. Zhao, and T. Sarkar, "Performance of a massively parallel higher-order method of moments code using thousands of CPUS and its applications," IEEE Trans. Antennas and Propagation, Vol. 62, 6317-6324, Dec. 2014.
doi:10.1109/TAP.2014.2361135

23. Adams, R., Y. Xu, X. Xu, S. Gedney, and F. Canning, "Modular fast direct electromagnetic analysis using local-global solution modes," IEEE Trans. Antennas and Propagation, Vol. 56, 2427-2441, Aug. 2008.
doi:10.1109/TAP.2008.926769

24. Wei, J.-G., Z. Peng, and J.-F. Lee, "A fast direct matrix solver for surface integral equation methods for electromagnetic wave scattering from non-penetrable targets," Radio Science, Vol. 47, No. RS5003, 2012.

25. Heldring, A., et al., "Accelerated direct solution of the method-of-moments linear system," Proceedings of the IEEE, Vol. 101, No. 2, 364-371, 2013.
doi:10.1109/JPROC.2012.2193369

26. Ergul, O. and L. Gurel, "Accurate solutions of extremely large integral-equation problems in computational electromagnetics," Proceedings of the IEEE, Vol. 101, No. 2, 342-349, 2013.
doi:10.1109/JPROC.2012.2204429

27. Vipiana, F., M. A. Francavilla, and G. Vecchi, "EFIE modeling of high-definition multiscale structures," IEEE Trans. Antennas and Propagation, Vol. 58, 2362-2374, Jul. 2010.

28. Nair, N. and B. Shanker, "Generalized method of moments: A novel discretization technique for integral equation," IEEE Trans. Antennas and Propagation, Vol. 59, 2280-2293, Jun. 2011.
doi:10.1109/TAP.2011.2143652

29. Tong, M. S. and W. C. Chew, "A novel mesh less scheme for solving surface integral equations with flat integral domain," IEEE Trans. Antennas and Propagation, Vol. 60, 3285-3293, Jul. 2012.

30. Bendali, A., F. Collino, M. Fares, and B. Steif, "Extension to nonconforming meshes of the combined current and charge integral equation," IEEE Trans. Antennas and Propagation, Vol. 60, 4732-4744, Oct. 2012.

31. Chouly, F. and N. Heuer, "A Nitsche-based domain decomposition method for hypersingular integral equations," Numer. Math., Vol. 121, 705-729, Aug. 2012.
doi:10.1007/s00211-012-0451-2

32. Ubeda, E., J. Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Trans. Antennas and Propagation, Vol. 62, 4171-4186, Aug. 2014.
doi:10.1109/TAP.2014.2325954

33. Peng, Z., K.-H. Lim, and J.-F. Lee, "A discontinuous Galerkin surface integral equation method for electromagnetic wave scattering from nonpenetrable targets," IEEE Trans. Antennas and Propagation, Vol. 61, No. 7, 3617-3628, 2013.
doi:10.1109/TAP.2013.2258394

34. Peng, Z., R. Hiptmair, Y. Shao, and B. MacKie-Mason, "Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems," IEEE Trans. Antennas and Propagation, doi: 10.1109/TAP.2015.2500908, 2015.
doi:10.1109/TAP.2013.2258394

35. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagation, Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

36. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas and Propagation, Vol. 47, No. 2, 339-346, 1999.
doi:10.1109/8.761074

37. Lee, J. F., R. Burkholder, and R. Lee, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Trans. Antennas and Propagation, Vol. 51, 1855-1863, Aug. 2003.
doi:10.1109/TAP.2003.814736

38. Adams, R. J., "Physical and analytical properties of a stabilized electric field integral equation," IEEE Trans. Antennas and Propagation, Vol. 52, 362-372, Feb. 2004.
doi:10.1109/TAP.2004.823957

39. Stephanson, M. and J.-F. Lee, "Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions," IEEE Trans. Antennas and Propagation, Vol. 57, 1274-1279, Apr. 2009.
doi:10.1109/TAP.2009.2016173

40. Bruno, O., T. Elling, R. Paffenroth, and C. Turc, "Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations," J. Comput. Phys., Vol. 228, 6169-6183, Sep. 2009.
doi:10.1016/j.jcp.2009.05.020

41. Wiedenmann, O. and T. F. Eibert, "A domain decomposition method for boundary integral equations using transmission condition based on the near-zone coupling," IEEE Trans. Antennas and Propagation, Vol. 62, 4105-4114, Aug. 2014.
doi:10.1109/TAP.2014.2322881

42. Echeverri Bautista, M., F. Vipiana, M. Francavilla, J. Tobon Vasquez, and G. Vecchi, "A nonconformal domain decomposition scheme for the analysis of multi-scale structures," IEEE Trans. Antennas and Propagation, doi: 10.1109/TAP.2015.2430873, 2015.

43. Toselli, A. and O. Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer, Berlin, 2005.

44. Peng, Z., X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Trans. Antennas and Propagation, Vol. 59, 3328-3338, Sep. 2011.
doi:10.1109/TAP.2011.2161542

45. Langer, U., G. Of, O. Steinbach, and W. Zulehner, "Inexact data-sparse boundary element tearing and interconnecting methods," SIAM J. Sci. Comput., Vol. 29, No. 1, 290-314, 2007.
doi:10.1137/050636243

46. Steinbach, O. and M. Windisch, "Stable boundary element domain decomposition methods for the Helmholtz equation," Numer. Math., Vol. 118, No. 1, 171-195, 2011.
doi:10.1007/s00211-010-0315-6

47. Karypis, G. and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM J. Sci. Comput., Vol. 20, No. 1, 359-392 (electronic), 1998.
doi:10.1137/S1064827595287997

48. Parks, M. L., E. D. Sturler, G. Mackey, D. D. Johnson, and S. Maiti, "Recycling Krylov subspaces for sequences of linear systems," SIAM J. Sci. Comput., Vol. 28, No. 5, 1651-1674, 2006.
doi:10.1137/040607277

49. Wei, J.-G., Z. Peng, and J.-F. Lee, "Multi-scale electromagnetic computations using a hierarchical multi-level fast multipole algorithm," Radio Science, Vol. 49, No. 11, 1022-1040, 2014.
doi:10.1002/2013RS005250

50. Pan, X.-M., J.-G. Wei, Z. Peng, and X.-Q. Sheng, "A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm," Radio Science, Vol. 47, No. RS1011, 2012.

51. Ho, K. L. and L. Greengard, "A fast direct solver for structured linear systems by recursive skeletonization," SIAM J. Sci. Comput., Vol. 34, No. 5, A2507-A2532, 2012.
doi:10.1137/120866683

52. Mahaffey, J. V., "A direct approach at eld computation using the FMM framework,", Master's Thesis, The Ohio State University, Columbus, Ohio, 2012.

53. Taboada, J. M., M. G. Araújo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodríguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetic (invited paper)," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

54. Taboada, J., M. Araújo, F. Basteiro, J. Rodríguez, and L. Landesa, "MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics," Proceedings of the IEEE, Vol. 101, 350-363, Feb. 2013.
doi:10.1109/JPROC.2012.2194269

55. Lawrence Livermore National Laboratory, "Visit users manual,", https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/visit/VisItUsersManual1.5.pdf, 2005.

56. Campbell, S. L., I. C. F. Ipsen, C. T. Kelley, and C. D. Meyer, "GMRES and the minimal polynomial," BIT Numer. Math., Vol. 36, 664-675, 1996.
doi:10.1007/BF01733786

57. Meurant, G. and J. D. Tebbens, "The role eigenvalues play in forming GMRES residual norms with non-normal matrices," Numer. Algorithms, Vol. 68, No. 1, 143-165, 2015.
doi:10.1007/s11075-014-9891-3

58. Dolean, V., P. Jolivet, and F. Nataf, "An introduction to domain decomposition methods: Algorithms, theory and parallel implementationAlgorithms, theory and parallel implementation,", Master, France, 2015.
doi:10.1007/s11075-014-9891-3


© Copyright 2014 EMW Publishing. All Rights Reserved