Vol. 155
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-03-03
Deriving Meaningful Equivalent Circuits for Electrically Small Multi-Conductor Structures
By
Progress In Electromagnetics Research, Vol. 155, 63-74, 2016
Abstract
A new circuit reduction algorithm for generating physically meaningful equivalent circuits for electrically small structures is proposed in this work. It makes use of the generalized Y-to-Δ transformation as well as features unique to partial element equivalent circuits (PEECs) to perform the reduction process. For a given partial element equivalent circuit, insignificant nodes are removed one by one in a prioritized order according to both user-specified cut-off frequency and threshold value. By having the freedom of choosing these parameters, this algorithm provides users an option to make a tradeoff between accuracy and simplicity of the final reduced circuit. Since the generalized Y-to-Δ transformation can keep all mutual couplings intact, the order-reduced circuit should correctly capture all physical essences of the structure being modeled. Two examples are presented in this paper to validate the proposed algorithm. The equivalent circuits obtained can indeed reflect all essential physical features, demonstrating that the algorithm is a useful tool for designing and analyzing electrically small multi-conductor structures.
Citation
Lap-Kun Yeung, "Deriving Meaningful Equivalent Circuits for Electrically Small Multi-Conductor Structures," Progress In Electromagnetics Research, Vol. 155, 63-74, 2016.
doi:10.2528/PIER15120903
References

1. Ruehli, A. E., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. Microwave Theory Tech., Vol. 22, No. 3, 216-221, March 1974.
doi:10.1109/TMTT.1974.1128204

2. Pillage, L. T. and R. A. Rohrer, "Asymptotic waveform evaluation for timing analysis," IEEE Trans. Computer-aided Design Integr. Circuits Syst., Vol. 9, No. 4, 352-366, April 1990.
doi:10.1109/43.45867

3. Feldmann, P. and R. W. Freund, "Efficient linear circuit analysis by Pade approximation via the Lanczos process," IEEE Trans. Computer-aided Design Integr. Circuits Syst., Vol. 14, No. 5, 639-649, May 1995.
doi:10.1109/43.384428

4. Silveria, M., M. Kamon, I. Elfadel, and J. White, "A coordinate transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of arbitrary RLC circuits," Proc. ACM/IEEE Int. Conf. Computer-aided Design, 288-294, San Jose, CA, 1996.

5. Odabasioglu, A., M. Celik, and L. T. Pileggi, "PRIMA: Passive reduced-order interconnect macromodeling algorithm," IEEE Trans. Computer-aided Design Integr. Circuits Syst., Vol. 17, No. 8, 645-654, August 1998.
doi:10.1109/43.712097

6. Ferranti, F., M. Nakhla, G. Antonini, T. Dhaene, L. Knockaert, and A. Ruehli, "Multipoint full-wave model order reduction for delayed PEEC models with large delays," IEEE Trans. Electromagnetic Compat., Vol. 53, No. 4, 959-967, November 2011.
doi:10.1109/TEMC.2011.2154335

7. Ferranti, F., G. Antonini, T. Dhaene, and L. Knockaert, "Guaranteed passive parameterized model order reduction of the partial element equivalent circuit (PEEC) method," IEEE Trans. Electromagnetic Compat., Vol. 52, No. 4, 974-984, November 2010.
doi:10.1109/TEMC.2010.2051949

8. Ferranti, F., G. Antonini, T. Dhaene, L. Knockaert, and A. E. Ruehli, "Physics-based passivitypreserving parameterized model order reduction for PEEC circuit analysis," IEEE Trans. Components, Packaging Manufacturing Tech., Vol. 1, No. 3, 399-409, March 2011.
doi:10.1109/TCPMT.2010.2101912

9. Ferranti, F., M. Nakhla, G. Antonini, T. Dhaene, L. Knockaert, and A. E. Ruehli, "Interpolationbased parameterized model order reduction of delayed systems," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 3, 431-440, March 2012.
doi:10.1109/TMTT.2011.2181858

10. Elias, P. J. H. and N. P. van der Meijs, "Extracting circuit models for large RC interconnections that are accurate up to a predefined signal frequency," Proc. Design Automation Conf., 764-769, 1996.

11. Van Genderen, A. J. and N. P. van der Meijs, "Extracting simple but accurate RC models for VLSI interconnect," Proc. Int. Symp. Circuits Syst., 2351-2354, 1988.

12. Sheeham, B. N., "TICER: Realizable reduction of extracted RC circuits," Proc. Int. Conf. Computer-Aided Design, 200-203, 1999.

13. Wang, J. and K.-L. Wu, "A derived physically expressive circuit model for multilayer RF embedded passives," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 5, 1961-1968, May 2006.
doi:10.1109/TMTT.2006.873621

14. Yeung, L. K. and K. L. Wu, "A compact second-order LTCC bandpass filter with two finite transmission zeros," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 2, 337-341, February 2003.
doi:10.1109/TMTT.2002.807846

15. Sutono, A., J. Laskar, and W. R. Smith, "Development of three dimensional integrated Bluetooth image reject filter," IEEE MTT-S Int. Microwave Symp. Dig., 339-342, Boston, MA, 2000.