PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 156 > pp. 25-35

FERRITE MAGNETIC-ANISOTROPY FIELD EFFECTS ON INDUCTANCE AND QUALITY FACTOR OF PLANAR GHZ INDUCTORS

By J. Lee, Y.-K. Hong, C. Yun, W. Lee, J.-H. Park, and S. Bae

Full Article PDF (378 KB)

Abstract:
Planar gigahertz (GHz) inductors were fabricated based on high crystalline-anisotropy Zn0.13Co0.04Ni0.63Fe2.2O4 (Zn-Co-Ni ferrite) and Ba3Co2Fe24O41 (Co2Z hexaferrite) and characterized for inductance (L) and quality (Q) factor. The planar ferrite inductors show an L of 4.5 nH (Zn-Co-Ni), 5.6 nH (Zn-Co-Ni + low Hk and fFMR Co2Z:), and 4.8 nH (Zn-Co-Ni + high Hk and fFMR Co2Z:) at 2 GHz. The corresponding L-densities are 18.0, 22.4, and 19.2 nH/mm2, which are greater than 16.8 nH/mm2 of the air-core inductor. With respect to the Q factor, the air-core and ferrite inductors exhibit Q factors of 6.7 (air-core), 4.8 (Zn-Co-Ni), 2.8 (Zn-Co-Ni + low Hk Co2Z), and 4.0 (Zn-Co-Ni + high Hk Co2Z) at 2 GHz. The tan δμ of the ferrites caused a reduction in the Q factor. Nevertheless, the high Hk and fFMR Co2Z ferrite inductor demonstrates a higher Q factor than that of the low Hk and fFMR Co2Z inductor. It is, therefore, suggested that high-resistivity, -anisotropy, -magnetization ferrite can produce large L-density and Q-factor GHz inductors.

Citation:
J. Lee, Y.-K. Hong, C. Yun, W. Lee, J.-H. Park, and S. Bae, "Ferrite Magnetic-Anisotropy Field Effects on Inductance and Quality Factor of Planar GHz Inductors," Progress In Electromagnetics Research, Vol. 156, 25-35, 2016.
doi:10.2528/PIER16020901
http://www.jpier.org/PIER/pier.php?paper=16020901

References:
1. Yamaguchi, M., M. Baba, and K. I. Arai, "Sandwich-type ferromagnetic RF integrated inductor," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 12, 2331-2335, 2001.
doi:10.1109/22.971617

2. Gardner, D. S., G. Schorom, P. Hazucha, F. Paillet, T. Karnik, S. Borkar, R. Hallstein, T. Dambrauskas, C. Hill, C. Linde, W. Worwang, R. Baresel, and S. Muthukumar, "Integrated on-chip inductors using magnetic material," J. Appl. Phys., Vol. 103, No. 7, 07E927-1-07E927-6, 2008.
doi:10.1063/1.2838012

3. Sato, N., Y. Endo, and M. Yamaguchi, "Skin effect suppression for Cu/CoZrNd multilayered inductor," J. Appl. Phys., Vol. 111, No. 7, 07A501-1-07A501-3, 2012.
doi:10.1063/1.3670061

4. Gao, Y., S. Zare, X. J. Yang, T. X. Nan, Z. Y. Zhou, M. Onabajo, K. P. O’Brien, U. Jalan, M. El-tanani, P. Fisher, M. Liu, A. Aronow, K. Mahalingam, B. M. Howe, G. J. Brown, and N. X. Sun, "High quality factor integrated gigahertz magnetic transformers with FeGaB/Al2O3 multilayer films for radio frequency integrated circuits applications," J. Appl. Phys., Vol. 115, No. 17, 17E714-1-17E714-3, 2014.
doi:10.1063/1.4871835

5. Davies, R. P., C. Cheng, N. Sturcken, W. E. Bailey, and K. L. Shepard, "Coupled inductors with crossed anisotropy CoZrTa/SiO2 multilayer cores," IEEE Trans. Magn., Vol. 49, No. 7, 4009-4012, 2013.
doi:10.1109/TMAG.2013.2237892

6. Kaneko, K., N. Inoue, N. Furutake, and Y. Hayashi, "A novel multilayered Ni-Zn-ferrite/TaN film for RF/mobile applications," Jpn. J. Appl. Phys., Vol. 49, No. 4, 04DB15-1-04DB15-5, 2010.
doi:10.1143/JJAP.49.04DB15

7. Qu, W., X. H. Wang, and L. Li, "Preparation and performance of NiCuZn-Co2Z composite ferrite material," J. Magn. Magn. Mater., Vol. 257, No. 2–3, 284-289, 2003.
doi:10.1016/S0304-8853(02)01210-6

8. Cai, H. L., J. Zhan, C. Yang, X. Chen, Y. Yang, B. Y. Chi, A. Wang, and T. L. Ren, "Application of ferrite nanomaterial in RF on-chip inductors," J. Nanomater., Vol. 2013, 1-12, 2013.
doi:10.1155/2013/832401

9. Yang, C., F. Liu, X. Wang, J. Zhan, A. Wang, T. L. Ren, L. T. Liu, H. Long, Z. Wu, and X. Li, "Investigation of on-chip soft-ferrite-integrated inductors for RFICs --- Part II: Experiments," IEEE Trans. Electron Devices, Vol. 56, No. 12, 3141-3148, 2009.
doi:10.1109/TED.2009.2033413

10. Cai, H. L., Y. Yang, N. Qi, X. Chen, H. Tian, Z. Song, Y. Xu, C. J. Zhou, J. Zhan, A. Wang, B. Chi, and T. L. Ren, "A 2.7-mW 1.36–1.86-GHz LC-VCO with a FOM of 202 dBc/Hz enabled by a 26%-size-reduced nano-particle-magnetic-enhanced inductor," IEEE Trans. Microwave Theory Tech., Vol. 62, No. 5, 1221-1228, 2014.
doi:10.1109/TMTT.2014.2312886

11. Kittel, C., "On the theory of ferromagnetic resonance absorption," Phys. Rev., Vol. 73, No. 2, 155-161, 1948.
doi:10.1103/PhysRev.73.155

12. Smit, J. and H. P. J. Wijn, Ferrites, 271, John Wiley & Sons, New York, 1959.

13. Lee, D. W., K. P. Hwang, and S. X. Wang, "Fabrication and analysis of high-performance integrated solenoid inductor with magnetic core," IEEE Trans. Magn., Vol. 44, No. 11, 4089-4095, 2008.
doi:10.1109/TMAG.2008.2003398

14. Lee, D. W. and S. X. Wang, "Effects of geometries on permeability spectra of CoTaZr magnetic cores for high frequency applications," J. Appl. Phys., Vol. 103, No. 7, 07E907-1-07E907-3, 2008.

15. Soohoo, R. F., "Magnetic thin film inductor for integrated circuit applications," IEEE Trans. Magn., Vol. 15, No. 6, 1803-1805, 1979.
doi:10.1109/TMAG.1979.1060499

16. Moulson, J. and J. M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons, 2003.

17. Chikazumi, S., Physics of Ferromagnetism, John Wiley & Sons, 1964.

18. Stoppels, D., "Developments in soft magnetic power ferrites," J. Magn. Mater., Vol. 160, No. 1, 323-328, 1996.
doi:10.1016/0304-8853(96)00216-8

19. Tsutaoka, T., M. Ueshima, and T. Tokunaga, "Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials," J. Appl. Phys., Vol. 78, No. 6, 3983-3991, 1995.
doi:10.1063/1.359919

20. Rado, G. T., R. W. Wright, and W. H. Emerson, "Ferromagnetism at very high frequencies. III. Two mechanisms of dispersion in a ferrite," Phys. Rev., Vol. 80, No. 2, 273-280, 1950.
doi:10.1103/PhysRev.80.273

21. Lee, J., Y. K. Hong, S. Bae, J. Jalli, G. S. Abo, J. Park, W. M. Seong, S. H. Park, and W. K. Ahn, "Low loss Co2Z (Ba3 Co2Fe24O41)-glass composite for gigahertz antenna application," J. Appl. Phys., Vol. 109, No. 7, 07E530-1-07E530-3, 2011.

22. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, I. T. Nam, W. M. Seong, J. S. Kim, and S. H. Park, "“New synthetic route of Z-type (Ba3Co2Fe24O41) hexaferrite particles," IEEE Trans. Magn., Vol. 45, No. 6, 2557-2560, 2009.
doi:10.1109/TMAG.2009.2018883

23. Yook, J. M., J. H. Ko, M. L. Ha, and Y. S. Kwon, "High-quality solenoid inductor using dielectric film for multichip modules," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 6, 2230-2234, 2005.
doi:10.1109/TMTT.2005.848775

24. Lee, D. W., Integrated inductor with magnetic core: A realistic option,.

25. Kondo, K., T. Chiba, H. Ono, S. Yoshida, Y. Shimada, N. Matsushita, and M. Abe, "Conducted noise suppression effect up to 3GHz by NiZn ferrite film plated at 90oC directly onto printed circuit board," J. Appl. Phys., Vol. 93, No. 10, 7130-7132, 2003.
doi:10.1063/1.1555362

26. Tanaka, T., Y. K. Hong, S. H. Gee, M. H. Park, D. W. Erickson, and C. Byun, "Analytical calculation for estimation of magnetic film properties for a 3-GHz thin film inductor," IEEE Trans. Magn., Vol. 40, No. 4, 2005-2007, 2004.
doi:10.1109/TMAG.2004.832251

27. Shen, X., R. Gong, Z. Feng, and Y. Nie, "Effective permeability of NiZnCo ferrite granular thin films," J. Am. Ceram. Soc., Vol. 90, No. 7, 2196-2199, 2007.
doi:10.1111/j.1551-2916.2007.01674.x


© Copyright 2014 EMW Publishing. All Rights Reserved