PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 157 > pp. 31-47

ANALYSIS OF THE NICOLSON-ROSS-WEIR METHOD FOR CHARACTERIZING THE ELECTROMAGNETIC PROPERTIES OF ENGINEERED MATERIALS

By E. J. Rothwell, J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo

Full Article PDF (523 KB)

Abstract:
A method for predicting the behavior of the permittivity and permeability of an engineered material by examining the measured S-parameters of a material sample is devised, assuming that the sample is lossless and symmetric. The S-parameter conditions under which the material parameters extracted using the Nicolson-Ross-Weir method may be associated with a lossless homogeneous material are described. Also, the relationship between the signs of the real and imaginary parts of the permittivity and permeability are determined, both when the extracted material parameters are real and when they are complex. In particular, the conditions under which metamaterials exhibit double-negative properties may be predicted from the S-parameters of a metamaterial sample. The relationships between material characteristics and the S-parameters should prove useful when synthesizing materials to have certain desired properties. Examples, both from experiment and simulation, demonstrate that the relationships may be used to understand the behavior of several different categories of engineered materials, even when the materials have appreciable loss.

Citation:
E. J. Rothwell, J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706
http://www.jpier.org/PIER/pier.php?paper=16071706

References:
1. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

2. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

3. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, Transmission/reflection and short-circuit line methods for measuring permittivity and permeability, Tech. Note 1355, National Institute of Standards and Technology, Dec. 1993.

4. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons Ltd., West Sussex, England, 2004.
doi:10.1002/0470020466

5. Morales, C., J. Dewdney, S. Pal, S. Skidmore, K. Stojak, H. Srikanth, T. Weller, and J. Wang, "Tunable magneto-dielectric polymer nanocomposites for microwave applications," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 2, 302-310, 2011.
doi:10.1109/TMTT.2010.2092788

6. Balaabed, B., J. L. Wojkiewicz, S. Lamoun, N. El Kamchi, and T. Lasri, "Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties," J. Alloys and Compounds, Vol. 527, 137-144, Jun. 25, 2012.

7. Soleimani, H., Z. Abbas, N. Yahya, H. Soleimani, and M. Y. Ghotbi, "Determination of complex permittivity and permeability of lanthanum iron garnet lled PVDF-polymer composite using rectangular waveguide and Nicholson-Ross-Weir (NRW) method at X-band frequencies," Measurement, Vol. 45, 1621-1625, 2012.
doi:10.1016/j.measurement.2012.02.014

8. Wang, L., R. Zhou, and H. Xin, "Microwave (8–50 GHz) characterization of multiwalled carbon nanotube papers using rectangular waveguides," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 499-506, 2008.
doi:10.1109/TMTT.2007.914627

9. Katsounaros, A., K. Z. Rajab, Y. Hao, M. Mann, and W. I. Milne, "Microwave characterization of vertically aligned multiwalled carbon nanotube arrays," Applied Phys. Lett., Vol. 98, 203105/1-203105/3, 2011.

10. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Trans Inst. Meas., Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249

11. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Ant. Propagat., Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

12. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153/1-075153/18, 2010.

13. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425-441, 2012.
doi:10.2528/PIER12072412

14. Karamanos, T. D., A. I. Dimitriadis, and N. V. Kantartzis, "Compact double-negative metamaterials based on electric and magnetic resonators," IEEE Ant. Wireless Propag. Lett., Vol. 11, 480-483, 2012.
doi:10.1109/LAWP.2012.2197170

15. Majid, H. A., M. K. A. Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

16. Singhal, P. K. and B. Garg, "Design and characterization of compact microstrip patch antenna using `split ring' shaped metamaterial structure," International Journal of Electrical and Computer Engineering, Vol. 2, No. 5, 655-662, 2012.

17. Zani, M. Z. M., M. H. Jusoh, A. A. Sulaiman, N. H. Baba, R. A. Awang, and M. F. Ain, "Circular patch antenna on metamaterial," Intl. Conf. on Electronic Devices, Systems and Applications (ICEDSA), 313-316, Kuala Lumpur, Malaysia, April 11-14, 2010.

18. Crowgey, B. R., J. Tang, E. J. Rothwell, B. Shanker, and L. C. Kempel, "A waveguide verification standard design procedure for the microwave characterization of magnetic materials," Progress In Electromagnetics Research, Vol. 150, 29-40, 2015.
doi:10.2528/PIER14100504

19. Wang, Y., Z. Duan, X. Tang, Z. Wang, Y. Zhang, J. Feng, and Y. Gong, "All-metal metamaterial slow-wave structure for high-power sources with high efficiency," Applied Physics Letters, Vol. 107, No. 15, 1, Oct. 2015.

20. Faraji, H. S., G. Atmatzakis, M. F. Su, and C. G. Christodoulou, "Creating double negative index metallic materials for HPM applications," Proc. AMEREM 2014, ID 124, Albuquerque, NM, Jul. 27-31, 2014.

21. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
doi:10.1109/MAP.2013.6529320

22. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, No. 1, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003

23. Helszajin, J., The Stripline Circulator: Theory and Practice, John Wiley & Sons, New York, 2008.
doi:10.1002/9780470264201

24. Ouedraogo, R. O., Topology optimization of metamaterials and their applications to RF component design, Ph.D. Dissertation, Michigan State University, East Lansing, MI, May 2011.

25. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and J. Tang, "Waveguide band-stop filter design using optimized pixelated inserts," Microwave and Optical Technology Letters, Vol. 55, No. 1, 141-143, 2013.
doi:10.1002/mop.27246


© Copyright 2014 EMW Publishing. All Rights Reserved