PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 158 > pp. 21-36

IMAGE RECONSTRUCTION FROM HIGHLY SPARSE AND LIMITED ANGULAR DIFFRACTION TOMOGRAPHY USING COMPRESSED SENSING APPROACH

By P. Roy Paladhi, A. Tayebi, P. Banerjee, L. Udpa, and S. Udpa

Full Article PDF (5,602 KB)

Abstract:
Diffraction tomography (DT) from limited projection data has been an active research topic for over three decades. The interest has been steadily fueled due to its application in multiple disciplines including medical imaging, structural health monitoring and non-destructive evaluation to name a few. This paper explores the applicability of compressed sensing to recover complex-valued objective functions (e.g., complex permittivity in microwave tomography). Generally, compressed sensing based tomographic reconstruction has been studied under full angular access. In this paper, the effect of lowering the angular access in addition to highly limited number of projection data is explored. The effectiveness of the reconstruction methods is tested with severely limited dataset which would render reconstruction impossible by traditional iterative approximation methods. Furthermore, results show that complex-valued phantoms can be reconstructed from as few as 15 projections from 120˚ coverage, a significant finding. In this study, the Total Variation (TV) has been used as the l1 norm within the compressed sensing framework. The robustness of the algorithm in presence of noise is discussed. Use of multiple sparse domains has also been explored briefly. The results show the effectiveness of TV as a regularization parameter even for complex-valued images under the compressed sensing regime. This is a pertinent observation as TV is a simple norm to implement. For a large class of images, especially in medical imaging, this implies the availability of a steady l1 norm for easy implementation of compressed sensing reconstruction for complex-valued images.

Citation:
P. Roy Paladhi, A. Tayebi, P. Banerjee, L. Udpa, and S. Udpa, "Image Reconstruction from Highly Sparse and Limited Angular Diffraction Tomography Using Compressed Sensing Approach," Progress In Electromagnetics Research, Vol. 158, 21-36, 2017.
doi:10.2528/PIER16111501
http://www.jpier.org/PIER/pier.php?paper=16111501

References:
1. Kak, A. C. and M. Slaney, "Principles of computerized tomographic imaging," Society for Industrial and Applied Mathematics, 2001.

2. Paladhi, P., A. Sinha, A. Tayebi, L. Udpa, and A. Tamburrino, "Data redundancy in diffraction tomography," 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, March 2015.

3. Paladhi, P. R., A. Tayebi, L. Udpa, S. Udpa, and A. Sinha, "Class of backpropagation techniques for limited-angle reconstruction in microwave tomography," AIP Conference Proceedings, Vol. 1650, No. 1, 509-518, 2015.
doi:10.1063/1.4914648

4. Paladhi, P. R., A. Sinha, A. Tayebi, L. Udpa, and S. S. Udpa, "Improved backpropagation algorithms by exploiting data redundancy in limited-angle diffraction tomography," Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016.
doi:10.2528/PIERB15120204

5. Paladhi, P. R., J. Klaser, A. Tayebi, L. Udpa, and S. Udpa, "Reconstruction algorithm for limited-angle diffraction tomography for microwave NDE," AIP Conference Proceedings, Vol. 1581, No. 1, 1544-1551, 2014.
doi:10.1063/1.4865007

6. LaRoque, S. J., E. Y. Sidky, and X. Pan, "Accurate image reconstruction from few-view and limited-angle data in diffraction tomography," JOSA A, Vol. 25, No. 7, 1772-1782, 2008.
doi:10.1364/JOSAA.25.001772

7. Sung, Y. and R. R. Dasari, "Deterministic regularization of three-dimensional optical diffraction tomography," JOSA A, Vol. 28, No. 8, 1554-1561, 2011.
doi:10.1364/JOSAA.28.001554

8. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

9. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

10. Candes, E. J., J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics, Vol. 59, No. 8, 1207-1223, 2006.
doi:10.1002/cpa.20124

11. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

12. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Resonance in Medicine, Vol. 58, No. 6, 1182-1195, 2007.
doi:10.1002/mrm.21391

13. Lustig, M., D. Donoho, J. Santos, and J. Pauly, "Compressed sensing MRI," IEEE Signal Processing Magazine, Vol. 25, No. 2, 72-82, March 2008.
doi:10.1109/MSP.2007.914728

14. Chartrand, R., "Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data," IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, ISBI'09, 262-265, 2009.
doi:10.1109/ISBI.2009.5193034

15. Gamper, U., P. Boesiger, and S. Kozerke, "Compressed sensing in dynamic MRI," Magnetic Resonance in Medicine, Vol. 59, No. 2, 365-373, 2008.
doi:10.1002/mrm.21477

16. Hua, S., M. Ding, and M. Yuchi, "Sparse-view ultrasound diffraction tomography using compressed sensing with nonuniform fit," Computational and Mathematical Methods in Medicine, Vol. 2014, 2014.

17. Zhu, Z., K. Wahid, P. Babyn, D. Cooper, I. Pratt, and Y. Carter, "Improved compressed sensing- based algorithm for sparse-view CT image reconstruction," Computational and Mathematical Methods in Medicine, Vol. 2013, 2013.

18. Mishali, M. and Y. C. Eldar, "From theory to practice: Sub-nyquist sampling of sparse wideband analog signals," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 375-391, 2010.
doi:10.1109/JSTSP.2010.2042414

19. Liu, J., C. Z. Han, X. H. Yao, and F. Lian, "A novel compressed sensing based method for space time signal processing for airborne radars," Progress In Electromagnetics Research B, Vol. 52, 139-163, 2013.
doi:10.2528/PIERB13033105

20. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," 2007 IEEE Radar Conference, 128-133, 2007.
doi:10.1109/RADAR.2007.374203

21. Yang, M. and G. Zhang, "Parameter identifiability of monostatic mimo chaotic radar using compressed sensing," Progress In Electromagnetics Research B, Vol. 44, 367-382, 2012.
doi:10.2528/PIERB12072712

22. El-Khamy, M., M. Farrag, and M. El-Sharkawy, "Wide-band secure compressed spectrum sensing for cognitive radio systems," Progress In Electromagnetics Research B, Vol. 53, 47-71, 2013.
doi:10.2528/PIERB13051805

23. Zhang, Y., L. Wu, B. Peterson, and Z. Dong, "A two-level iterative reconstruction method for compressed sensing MRI," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1081-1091, 2011.
doi:10.1163/156939311795762024

24. Zhang, Y., S. Wang, G. Ji, and Z. Dong, "Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 10, No. 1, 116-117, 2015.
doi:10.1002/tee.22059

25. Zhang, Y., B. S. Peterson, G. Ji, and Z. Dong, "Energy preserved sampling for compressed sensing MRI," Computational and Mathematical Methods in Medicine, Vol. 2014, 2014.

26. Devaney, A., "A filtered backpropagation algorithm for diffraction tomography," Ultrasonic Imaging, Vol. 4, No. 4, 336-350, 1982.
doi:10.1177/016173468200400404

27. Sung, Y., W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Optical diffraction tomography for high resolution live cell imaging," Optics Express, Vol. 17, No. 1, 266-277, 2009.
doi:10.1364/OE.17.000266

28. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

29. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "Microwave tomography employing an adjoint network based sensitivity matrix," Progress In Electromagnetics Research, Vol. 94, 213-242, 2009.
doi:10.2528/PIER09060808

30. Baran, A., D. J. Kurrant, A. Zakaria, E. C. Fear, and J. LoVetri, "Breast imaging using microwave tomography with radar-based tissue-regions estimation," Progress In Electromagnetics Research, Vol. 149, 161-171, 2014.
doi:10.2528/PIER14080606

31. Tayebi, A., J. Tang, P. R. Paladhi, L. Udpa, and S. Udpa, "Design and development of an electrically-controlled beam steering mirror for microwave tomography," AIP Conference Proceedings, Vol. 1650, 501-508, AIP Publishing, 2015.

32. Tayebi, A., J. Tang, P. R. Paladhi, L. Udpa, S. S. Udpa, and E. J. Rothwell, "Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4534-4539, 2015.
doi:10.1109/TAP.2015.2456939

33. Tayebi, A., P. Roy Paladhi, L. Udpa, and S. Udpa, "A novel time reversal based microwave imaging system," Progress In Electromagnetics Research C, Vol. 62, 139-147, 2016.
doi:10.2528/PIERC16012403

34. Candes, E. J. and T. Tao, "Decoding by linear programming," IEEE Transactions on Information Theory, Vol. 51, No. 12, 4203-4215, 2005.
doi:10.1109/TIT.2005.858979

35. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Problems, Vol. 23, No. 3, 969, 2007.
doi:10.1088/0266-5611/23/3/008

36. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi:10.1017/CBO9780511804441

37. Bronstein, M. M., A. M. Bronstein, M. Zibulevsky, and H. Azhari, "Reconstruction in diffraction ultrasound tomography using nonuniform fit," IEEE Transactions on Medical Imaging, Vol. 21, No. 11, 1395-1401, 2002.
doi:10.1109/TMI.2002.806423

38. Liberti, L. and N. Maculan, "Global optimization: From theory to implementation," Springer Science & Business Media, Vol. 84, 2006.

39. Sturm, J. F., "Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones," Optimization Methods and Software, Vol. 11, No. 1--4, 625-653, 1999.
doi:10.1080/10556789908805766


© Copyright 2014 EMW Publishing. All Rights Reserved