Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 159 > pp. 39-47


By L. Peng, X. Zheng, K. Wang, S. Sang, Y. Chen, and G. Wang

Full Article PDF (602 KB)

In this paper, we study the design and homogenization of bianisotropic metamaterials originated from planar split-ring resonators, which would potentially meets the requirements of the emerging photonic topological insulators and some other types of extotic photonic materials with non-trivial states. We show that the off-diagonal elements in the magneto-electric tensor can be realized by combining the planar split-ring resonators with different orientations. To ease the fabrication process, a layer-bylayer design of metamaterials with desired bianisotropy is proposed. The design and homogenization procedure of such metamaterials are verified through effective parameter retrieval approach and computer based simulation. With the proposed structure, the complex magneto-electric coupling is realized in layered structures through planar techniques, which may be useful in the terahertz and optical range.

L. Peng, X. Zheng, K. Wang, S. Sang, Y. Chen, and G. Wang, "Layer-by-Layer Design of Bianisotropic Metamaterial and its Homogenization," Progress In Electromagnetics Research, Vol. 159, 39-47, 2017.

1. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, Vol. 85, 2933, 2000.

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 1996.

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075, 1999.

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.

5. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 2000.

6. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.

7. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366, 2009.

8. Khanikaev, A. B., S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. Macdonald, and G. Shvets, "Photonic topological insulators," Nature Materials, Vol. 12, 233, 2013.

9. Chen, W. J., S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W. Dong, and C. T. Chan, "Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide," Nature Communications, Vol. 5, 5782, 2014.

10. Guo, Q., W. Gao, J. Chen, Y. Liu, and S. Zhang, "Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic MMs," Physical Review Letters, Vol. 115, 067402, 2015.

11. Xu, J., B. Wu, and Y. Chen, "Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: A decoupled case," Optics Express, Vol. 23, 11566, 2015.

12. Serdyudov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.

13. Slobozhanyuk, A. P., A. B. Khanikaev, D. S. Filonov, D. A. Smirnova, A. E. Miroshnichenko, and Y. S. Kivshar, "Experimental demonstration of topological effects in bianisotropic MMs," Scientific Reports, Vol. 6, 22270, 2016.

14. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of MMs," Physical Review E, Vol. 70, 016608, 2004.

15. Li, Z., K. Aydin, and E. Ozbay, "Retrieval of effective parameters for bianisotropic MMs with omega shape metallic inclusions," Photonics and Nanostructures-Fundamentals and Applications, Vol. 10, 329, 2012.

16. Chen, W. J., S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W. Dong, and C. T. Chan, "Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide," Nature Communications, Vol. 5, 5782, 2014.

17. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE, London, 1999.

18. Grzegorczyk, T. M., X. Chen, J. J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, "Relection coefficients an GOOS-H¨anchen shifts in anisotropic and bianisotropic left-handed MMs," Progress In Electromagnetics Research, Vol. 51, 83, 2005.

19. Christine, E. K., M. S. Rill, S. Linden, and M. Wegener, "Bianisotropic photonic MMs," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, 2, 2010.

20. Kong, J. A., Electromagnetic Wave Theory, EMW, Cambridge, MA, 2000.

21. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.

22. Peng, L. and N. A. Mortensen, "Equal-potential interpretation of electrically induced resonances in MMs," New Journal of Physics, Vol. 13, 053012, 2011.

23. Kriegler, C. E., M. S. Rill, M. Thiel, E. Muller, S. Essig, A. Frolich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, "Transition between corrugated metal films and split-ring-resonator arrays," Appl. Phys. B, Vol. 96, No. 4, 749, 2009.

24. Rill, M. S., C. E. Kriegler, M. Thiel, G. Freymann, S. Linden, and M. Wegener, "Negative-index bianisotropic photonic MM fabricated by direct laser writing and silver shadow evaporation," Optics Letters, Vol. 34, No. 1, 19, 2009.

© Copyright 2014 EMW Publishing. All Rights Reserved