PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 160 > pp. 1-8

TIME DECOMPOSITION METHOD FOR THE GENERAL TRANSIENT SIMULATION OF LOW-FREQUENCY ELECTROMAGNETICS

By B. He, C. Lu, N. Chen, D. Lin, M. Rosu, and P. Zhou

Full Article PDF (326 KB)

Abstract:
This paper describes a highly robust and efficient parallel computing method for the transient simulation of low-frequency electromagnetics with nonlinear materials and/or permanent magnets. In this method, time subdivisions are introduced to control the memory usage and nonlinear convergence. A direct block triangular matrix solver is applied to solve the formulated block matrix for each subdivision. This method has been implemented using the Message Passing Interface (MPI) for distributed memory parallel processing. Depending on the number of available MPI processes and physical memory, the entire nonlinear transient simulation can be divided into several subdivisions along the time-axis such that each MPI process handles only the computation for one time-step. Application examples are presented to demonstrate that this method can achieve excellent scalability of speedup.

Citation:
B. He, C. Lu, N. Chen, D. Lin, M. Rosu, and P. Zhou, "Time Decomposition Method for the General Transient Simulation of Low-Frequency Electromagnetics," Progress In Electromagnetics Research, Vol. 160, 1-8, 2017.
doi:10.2528/PIER17072501
http://www.jpier.org/PIER/pier.php?paper=17072501

References:
1. Yan, S., J.-M. Jin, C.-F. Wang, and J. D. Kotulski, "Numerical study of a time-domain finite element method for nonlinear magnetic problems in three dimensions (invited paper)," Progress In Electromagnetics Research, Vol. 153, 69-91, 2015.
doi:10.2528/PIER15091006

2. Yan, S. and J.-M. Jin, "Theoretical formulation of a time-domain finite element method for nonlinear magnetic problems in three dimensions (invited paper)," Progress In Electromagnetics Research, Vol. 153, 33-55, 2015.
doi:10.2528/PIER15091005

3. Pries, J. and H. Hofmann, "Steady-state algorithms for nonlinear time-periodic magnetic diffusion problems using diagonally implicit Runge-Kutta methods," IEEE Trans. Magn., Vol. 51, No. 4, 1-12, Apr. 2015.
doi:10.1109/TMAG.2014.2344005

4. Zhou, P., W. N. Fu, D. Lin, S. Stanton, and Z. J. Cendes, "Numerical modeling of magnetic devices," IEEE Transactions on Magnetics, Vol. 40, No. 4, 1803, 2004.
doi:10.1109/TMAG.2004.830511

5. Demerdash, N. A., J. F. Bangura, and A. A. Arkadan, "A time-stepping coupled finite elementstate space model for induction motor drives — Part 1: Model formulation and machine parameter computation," IEEE Trans. Energy Conversion, Vol. 14, 1465-1471, Dec. 1999.
doi:10.1109/60.815091

6. Pries, J., Computationally efficient steady-state simulation algorithms for finite-element models of electric machines, Ph.D. Dissertation, University of Michigan, 2015.

7. Kumbhar, A., K. Chakravarthy, R. Keshavamurthy, and G. V. Rao, "Utilization of parallel solver libraries to solve structural and fluid problems," Intel Math Kernel Library — White Papers, 2011.

8. Takahashi, Y., T. Tokumasu, M. Fujita, T. Iwashita, H. Nakashima, S. Wakao, and K. Fujiwara, "Time-domain parallel finite-element method for fast magnetic field analysis of induction motors," IEEE Trans. Magn., Vol. 49, No. 5, 2413-2416, May 2013.
doi:10.1109/TMAG.2013.2245114

9. Benzi, M., "Preconditioning techniques for large linear systems: A survey," J. Computat. Phys., Vol. 182, 418-477, 2002.
doi:10.1006/jcph.2002.7176

10. He, B., P. Zhou, C. Lu, N. Chen, D. Lin, M. Rosu, and B. Bork, "A time decomposition method for the transient simulation of low-frequency electromagnetics," Proc. 17th Biennial IEEE CEFC, Miami, FL, USA, WO23-5, 2016.

11. Kriezis, E. E., T. D. Tsiobukis, S. M. Panas, and J. A. Tegopoulos, "Eddy currents: Theory and applications," Proc. IEEE, Vol. 80, 1559-1589, Oct. 1992.

12. Davis, T. A., Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2006.
doi:10.1137/1.9780898718881

13. Van der Vorst, H. A., Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, 2003.
doi:10.1017/CBO9780511615115

14. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 7, No. 3, 856-869, 1986.
doi:10.1137/0907058

15. Gropp, W., E. Lusk, N. Doss, and A. Skjellum, "A high-performance portable implementation of the MPI message-passing interface standard," Parallel Computing, Vol. 22, No. 6, 789-828, 1996.
doi:10.1016/0167-8191(96)00024-5


© Copyright 2014 EMW Publishing. All Rights Reserved