Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 161 > pp. 1-10


By R. Zhao, H.-Y. Chen, L. Zhang, F. Li, P. Zhou, J. Xie, and L.-J. Deng

Full Article PDF (2,493 KB)

In this paper, the design and implementation of a three-layer linear polarization converter having broadband and asymmetric transmission (AT) properties is demonstrated. A 3.2 mm thick transmission-type polarization converter with two separate operating frequency bands is obtained with a cut-wire sandwiched by two layers of diagonal split-ring resonator (DSRR). The asymmetric transmission property can be realized by rotating the upper and lower DSRR dislocation, and its physical mechanism can be explicated by the Fabry-Pérot-like interference effect. Experimental results are presented and compared to numerical simulations, and they demonstrate that the proposed polarization converter has a significantly polarization conversion ratio over 0.8 in frequency bandwidths 8-11 GHz and 17-21 GHz for the forward and backward incidences. The proposed polarization converter has a great potential to be used as an asymmetric transmission radome or diode-like device in microwave domain.

R. Zhao, H.-Y. Chen, L. Zhang, F. Li, P. Zhou, J. Xie, and L.-J. Deng, "Design and Implementation of High Efficiency and Broadband Transmission-Type Polarization Converter Based on Diagonal Split-Ring Resonator," Progress In Electromagnetics Research, Vol. 161, 1-10, 2018.

1. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 16, 167401, 2006.

2. Ma, X., C. Huang, M. Pu, Y. Wang, and Z. Zhao, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901, 2012.

3. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial," Opt. Express, Vol. 19, No. 15, 14290-14299, 2011.

4. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.

5. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104, 2009.

6. Ozer, Z., et al., "Asymmetric transmission of linearly polarized light through dynamic chiral metamaterials in a frequency regime of gigahertz-terahertz," Optical Engineering, Vol. 53, No. 7, 075109-075109, 2014.

7. Wang, F., A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, "Polarization conversion with elliptical patch nanoantennas," Appl. Phys. Lett., Vol. 101, 023101, 2012.

8. Liu, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Elec. Letters, Vol. 38, No. 23, 1414-1416, 2002.

9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterialabsorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.

10. Kundtz, N. and D. R. Smith, "Extreme-angle broadband metamaterial lens," Nat. Mater., Vol. 9, 129-132, 2010.

11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.

12. Huang, L., X. Chen, H. M¨uhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Lett., Vol. 12, No. 11, 5750-5755, 2012.

13. Altintas, O., et al., "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, Vol. 31, No. 30, 1750274, 2017.

14. Cheng, Y., et al., "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Applied Physics A, Vol. 111, No. 1, 209-215, 2013.

15. Cheng, Y., et al., "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.

16. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik-International Journal for Light and Electron Optics, Vol. 136, 52-57, 2017.

17. Fang, C., et al., "Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface," Optik-International Journal for Light and Electron Optics, Vol. 137, 148-155, 2017.

18. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, No. 6, 063908, 2007.

19. Ye, Y. and S. He, "90◦ polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, No. 20, 203501, 2010.

20. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.

21. Zhu, W., I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, "Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration," J. Opt., Vol. 15, No. 12, 125101, 2013.

22. Serebryannikov, A. E., M. Beruete, M. Mutlu, and E. Ozbay, "Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling," Opt. Express, Vol. 23, No. 10, 13517-13529, 2015.

23. Markovich, D., A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. Lavrinenko, "Metamaterial polarization converter analysis: limits of performance," Appl. Phys. B, Vol. 112, No. 2, 143-152, 2013.

24. Serebryannikov, A. E., M. Mutlu, and E. Ozbay, "Dielectric inspired scaling of polarization conversion subwavelength resonances in open ultrathin chiral structures," Appl. Phys. Lett., Vol. 107, No. 22, 221907, 2015.

25. Dong, G. X., et al., "Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes," Chinese Physics B, Vol. 25, No. 8, 084202, 2016.

26. Zhao, J. C. and Y. Z. Cheng, "A high-effciency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.

27. Cheng, Y. Z., et al., "Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical," IEEE Photonics Journal, Vol. 8, No. 6, 1-9, 2016.

28. Aieta, F., P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities," Nano Lett., Vol. 12, No. 3, 1702-1706, 2012.

29. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Lett., Vol. 8, 2940, 2008.

30. Menzel, C., C. Helgert, C. Rockstuhl, E. B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.

31. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907, 2011.

32. Stolarek, M., D. Yavorskiy, R. Kotynski, C. J. Zapata Rodrıguez, J. Lusakowski, and T. Szoplik, "Asymmetric transmission of terahertz radiation through a double grating," Opt. Lett., Vol. 38, No. 6, 839-841, 2013.

33. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, No. 21, 213905, 2012.

34. Zhang, L., P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. li, J. Xie, and L. Deng, "Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K-band," Sci. Reports, Vol. 10, No. 1038, 33826, 2016.

35. Cheng, Y. Z., R. Z. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for teraherze waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.

36. Kang, M., J. Chen, H. X. Cui, Y. Li, and H. T. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, No. 9, 8347-8356, 2011.

37. Shi, J. H., X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, No. 19, 191905, 2013.

38. Wang, Y. H., J. Shao, J. Li, M. J. Zhu, J. Q. Li, L. Zhou, and Z. G. Dong, "Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials," J. Phys. D: Appl. Phys., Vol. 48, 485306, 2015.

39. Wang, Y. H., et al., "Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure," J. Appl. Phys., Vol. 117, No. 17, 173102-1-173102-7, 2015.

40. Liu, D. J., Z. Y. Xiao, X. L. Ma, and Z. H. Wang, "Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking," Appl. Phys. Express, Vol. 8, No. 5, 052001, 2015.

© Copyright 2014 EMW Publishing. All Rights Reserved