Vol. 161
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-04-18
Photo-Induced Electromagnetic Band Gap Structures for Optically Tunable Microwave Filters
By
Progress In Electromagnetics Research, Vol. 161, 101-111, 2018
Abstract
Electromagnetic band gap (EBG) structures offer unique solutions for effectively manipulating electromagnetic waves over a broad range of frequencies for a wide range of applications. However, most EBG designs reported so far either require sophisticated fabrication processes or have limited tunability and reconfigurability. In this paper, we investigate the potential to implement high performance tunable and reconfigurable EBG components using a novel optical control approach. This technology allows the generation of EBG structures through spatially-resolved photogeneration of free carriers in a semiconductor, without any complex fabrication processes. As a prototype demonstration, a reconfigurable microwave frequency tunable band-stop filter (BSF) based on photo-induced uniplanar EBG structures has been investigated through simulation. In this approach, the required EBG patterns are directly illuminated onto a Ge ground plane mounted to the bottom of a Duroid substrate for tunability using a digital light processing (DLP) projector. On the basis of HFSS simulations, the bandwidth of the BSF can be tuned by modifying the EBG pattern filling factor. The center frequency of the BSF could also be tuned from 8-12 GHz by adjusting the period of the EBG structure. In addition, two limiting factors, i.e., localized heating effects and finite lateral spatial resolution (due to carrier diffusion), that may affect the circuit performance in this technology have been investigated and discussed. By using a mesa-array structured ground plane, this approach is promising for developing tunable and reconfigurable circuits such as filters from the microwave to terahertz regimes.
Citation
Jun Ren, Zhenguo Jiang, Md. Itrat Bin Shams, Patrick Fay, and Lei Liu, "Photo-Induced Electromagnetic Band Gap Structures for Optically Tunable Microwave Filters," Progress In Electromagnetics Research, Vol. 161, 101-111, 2018.
doi:10.2528/PIER17120306
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Yablonovitch, E. and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case," Phys. Rev. Lett., Vol. 63, 18, 1989.

3. Oliner, A. A., "Periodic structure and photonic band-gap terminology: Historical perspectives," IEEE 29th European Microwave Conference, Vol. 3, 295-298, 1999.

4. Radisic, V., Y. Qian, and T. Itoh, "Broad-band power amplifier integrated with slot antenna and novel harmonic tuning structure," IEEE MTT-S Microwave Symp. Dig., 1895-1898, Baltimore, MD, June 7–12, 1998.

5. De Maagt, P., R. Gonzalo, J. Vardaxoglou, and J.-M. Baracco, "Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566

6. Chappell, W. J. and X. Gong, "Wide bandgap composite EBG substrates," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2744-2750, 2003.
doi:10.1109/TAP.2003.817569

7. Euler, T. and J. Papapolymerou, "Silicon micromachined EBG resonator and two-pole filter with improved performance characteristics," IEEE Microwave and Wireless Components Lett., Vol. 13, No. 9, 373-375, 2003.
doi:10.1109/LMWC.2003.817132

8. Hsu, H., M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, "A duroid-based planar EBG cavity resonator filter with improved quality factor," IEEE Antennas and Wireless Propagation Lett., Vol. 1, No. 6, 67-70, 2002.

9. Fu, Y.-Q., G.-H. Zhang, and N.-C. Yuan, "A novel PBG coplanar waveguide," IEEE Microwave and Wireless Components Lett., Vol. 11, No. 11, 447-449, 2001.
doi:10.1109/7260.966037

10. Mukherjee, B., V. D. Kumar, and M. Gupta, "A novel hemispherical dielectric resonator antenna on an electromagnetic band gap substrate for broadband and high gain systems," AEU — International Journal of Electronics and Communication, Vol. 68, 1185-1190, Elsevier, 2014.

11. Mukherjee, B., S. Tiwari, and A. L. Samariya, "Improvement in Radiation losses of Spur Line Resonators based LPF on an EBG substrate," International Journal of Applied Electromagnetics and Mechanics, Vol. 41, No. 4, 447-455, IOS Press, 2013.

12. Mukherjee, B., A. L. Samariya, and S. Tiwari, "Improvement in roll off factor of low pass filter placed on an EBG substrate," Frequenz: Journal of RF Engineering and Telecommunications, Vol. 67, No. 3–4, 73-78, February 2013.

13. Delustrac, A., F. Gadot, E. Akmansoy, and T. Brillat, "High-directivity planar antenna using controllable photonic bandgap material at microwave frequencies," A Phys. Lett., Vol. 78, 4196, 2002.

14. Mercier, L., M. Thevenot, P. Blonby, and B. Jecko, "Design and characterization of a smart periodic material including MEMS," Proc. 27th ESA Antenna Technology Workshop on Innovative Periodic Antennas: Elecromagnetic Bandgap, Left-Handed Materials, Fractal and Frequency Selective Surfaces, Santigao de Compostela, Spain, March 2004.

15. Kannegulla, A., M. I. B. Shams, L. Liu, and L.-J. Cheng, "Photo-induced spatial modulation of THz waves: Opportunities and limitations," Opt. Exp., Vol. 23, No. 25, 32098-32112, 2015.
doi:10.1364/OE.23.032098

16. Kannegulla, A., et al. "Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams," IEEE Trans. THz Sci. Technol., Vol. 4, No. 3, 321-327, May 2014.
doi:10.1109/TTHZ.2014.2307163

17. Shams, M. I. B., Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, "A Terahertz reconfigurable photo-induced fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming," International Microwave Symposium, 1-4, Phoenix, Arizona, 2015.

18. Jiang, Z., M. I. B. Shams, L.-J. Cheng, P. Fay, J. L. Hesler, C. E. Tong, and L. Liu, "Investigation and demonstration of a WR-4.3 optically-controlled waveguide attenuator," IEEE Trans. THz Sci. Technol., Vol. 7, No. 1, 20-26, 2017.

19. Platte, W., "LED-induced distributed Bragg reflection microwave filter with fiber-optically controlled change of center frequency via photoconductivity gratings," IEEE Trans. Microwave Theory and Techniques, Vol. 39, No. 2, 359-363, 1991.
doi:10.1109/22.102986

20. Vardaxoglou, J. C., D. S. Lockyer, Y. L. R. Lee, and A. Chauraya, "Photonic bandgap and bandpass characteristics from metallodielectric periodic array structures," Proc. 24th ESA Antenna Technology Workshop on Innovative Periodic Antennas: Elecromagnetic Bandgap, Left-Handed Materials, Fractal and Frequency Selective Surfaces, Noordwijk, The Netherlands, June 2001.

21. Ulbricht, R., et al. "Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy," Rev. Modern Phys., Vol. 83, No. 2, 543-586, 2011.
doi:10.1103/RevModPhys.83.543

22. Pierretand, R. F. and G. W. Neudeck, "Recombination-generation processes," Advanced Semiconductor Fundamentals, 2nd Edition, Vol. 6, 134-140, Addison-Wesley, Reading, MA, USA, 1987.

23. Liu, L., et al. "Tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication," Proc. SPIE, 9934, Terahertz Emitters, Receivers, and Applications VII, 993407, 2016.

24. Palik, E. D., Handbook of Optical Constants of Solids, Academia, 1988.

25. Sze, S. M., Physics of Semiconductor Devices, Wiley Publishers, 1981.

26. Koshiba, M., Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," J. Lightwave Technol., Vol. 18, 102-110, 2000.
doi:10.1109/50.818913

27. Koshiba, M., "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol., Vol. 19, 170-175, 2001.

28. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, 2772-2775, 1992.
doi:10.1103/PhysRevLett.69.2772

29. Pendry, J. B., "Photonic band structures," Journal of Modern Optics, Vol. 41, 209-229, 1994.
doi:10.1080/09500349414550281

30. http://www.rogerscorp.com/documents/612/index.aspx.

31. Hao, Z.-C., W. Hong, J.-X. Chen, and K. Wu, "Compact super-wide bandpass substrate integrated waveguide (SIW) filters," IEEE Trans. Microwave Theory and Tech., Vol. 53, No. 9, September 2005.

32. Cassivi, Y. and K. Wu, "NRD-guide spurious mode suppressor using self-contained periodic planar EBG structure," IEEE Proc. APMC, 659-662, Taipei, 2001.

33. Gong, X., W. J. Chapper, and L. P. B. Katehi, "Reduced size capacitive defect EBG resonator," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1091-1094, June 2002.

34. Tuckerman, D. B. and R. F. W. Pease, "High-performance heat sinking for VLSI," IEEE Electron Device Letters, Vol. edl-2, No. 5, 126-129, May 1981.
doi:10.1109/EDL.1981.25367

35. Chu, R. C., R. E. Simons, M. J. Ellsworth, R. R. Schmidt, and V. Cozzolino, "Review of cooling technologies for computer products," IEEE Trans. Device and Materials Reliability, Vol. 4, No. 4, 568-585, December 2004.
doi:10.1109/TDMR.2004.840855

36. Bottner, H., J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, and K.-H. Schlereth, "New thermoelectric components using microsystem technologies," Journal of Microelectromechanical Systems, Vol. 13, No. 3, 414-420, June 2004.
doi:10.1109/JMEMS.2004.828740

37. Lindblom, M., J. Reinspach, O. von Hofsten, M. Bertilson, H. M. Hertz, and A. Holmberg, "Highaspect-ratio germanium zone plates fabricated by reactive ion etching in chlorine," J. Vac. Sci. Technol. B, Vol. 27, No. 2, L1-L3, March/April 2009.
doi:10.1116/1.3089371