Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 160 > pp. 103-121


By X. Cheng and B. Guan

Full Article PDF (1,541 KB)

X. Cheng and B. Guan, "Optical Biosensing and Bioimaging with Porous Silicon and Silicon Quantum Dots (Invited Review)," Progress In Electromagnetics Research, Vol. 160, 103-121, 2017.

1. Priolo, F., T. Gregorkiewicz, M. Galli, and T. F. Krauss, "Silicon nanostructures for photonics and photovoltaics," Nature Nanotechnology, Vol. 9, 19, 2014.

2. Chan, C. K., H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "Highperformance lithium battery anodes using silicon nanowires," Nature Nanotechnology, Vol. 3, 31, 2007.

3. Peng, F., Y. Su, Y. Zhong, C. Fan, S.-T. Lee, and Y. He, "Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy," Accounts Chem. Res., Vol. 47, No. 2, 612-623, 2014.

4. Liu, J., F. Erogbogbo, K.-T. Yong, L. Ye, J. Liu, R. Hu, H. Chen, Y. Hu, Y. Yang, J. Yang, I. Roy, N. A. Karker, M. T. Swihart, and P. N. Prasad, "Assessing clinical prospects of silicon quantum dots: Studies in mice and monkeys," ACS Nano, 2013.

5. Anglin, E. J., L. Y. Cheng, W. R. Freeman, and M. J. Sailor, "Porous silicon in drug delivery devices and materials," Adv. Drug Deliver Rev., Vol. 60, No. 11, 1266-1277, 2008.

6. Cheng, X., S. B. Lowe, P. J. Reece, and J. J. Gooding, "Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications," Chem. Soc. Rev., Vol. 43, No. 8, 2680-2700, 2014.

7. McVey, B. F. and R. D. Tilley, "Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals," Acc Chem. Res., Vol. 47, No. 10, 3045-3051, 2014.

8. Uhlir, A., "Electrolytic Shaping of Germanium and silicon," Bell Syst. Tech. J., Vol. 35, 333-347, 1956.

10. Lin, V. S.-Y., K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous siliconbased optical interferometric biosensor," Science, Vol. 278, No. 5339, 840-843, 1997.

11. Jane, A., R. Dronov, A. Hodges, and N. H. Voelcker, "Porous silicon biosensors on the advance," Trends Biotechnol., Vol. 27, 230-239, 2009.

12. Dhanekar, S. and S. Jain, "Porous silicon biosensor: Current status," Biosensors and Bioelectronics, Vol. 41, 54-64, 2013.

13. Harraz, F. A., "Porous silicon chemical sensors and biosensors: A review," Sensors and Actuators B: Chemical, Vol. 202, 897-912, 2014.

14. Shtenberg, G. and E. Segal, "Porous silicon optical biosensors," Handbook of Porous Silicon, L. Canham (ed.), 857-868, Springer, Switzerland, 2014.

15. Fathauer, R. W., T. George, A. Ksendzov, and R. P. Vasquez, "Visible luminescence from silicon wafers subjected to stain etches," Applied Physics Letters, Vol. 60, No. 8, 995-997, 1992.

16. Pyatilova, O. V., S. A. Gavrilov, Y. I. Shilyaeva, A. A. Pavlov, Y. P. Shaman, and A. A. Dudin, "Influence of the doping type and level on the morphology of porous Si formed by galvanic etching," Semiconductors, Vol. 51, No. 2, 173-177, 2017.

17. Li, X. and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, Vol. 77, No. 16, 2572-2574, 2000.

18. Balderas-Valadez, R. F., V. Agarwal, and C. Pacholski, "Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching," RSC Advances, Vol. 6, No. 26, 21430-21434, 2016.

19. Zhao, M., R. Balachandran, J. Allred, and M. Keswani, "Synthesis of porous silicon through interfacial reactions and measurement of its electrochemical response using cyclic voltammetry," RSC Advances, Vol. 5, No. 96, 79157-79163, 2015.

20. Rauscher, M. and H. Spohn, "Porous silicon formation and electropolishing," Physical Review E, Vol. 64, No. 3, 031604, 2001.

21. Canham, L., "Porous silicon formation by anodisation," Properties of Porous Silicon, Vol. 1, 12, Halimaoui, A., Ed., IEE, London; L. Canham Ed., 1997.

22. Cullis, A., L. Canham, and P. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys., Vol. 82, 909, 1997.

23. Theiss, W., "Optical properties of porous silicon," Surf. Sci. Rep., Vol. 29, 91-192, 1997.

24. Vincent, G., "Optical properties of porous silicon superlattices," Appl. Phys. Lett., Vol. 64, 2367, 1994.

25. Mazzoleni, C. and L. Pavesi, "Application to optical components of dielectric porous silicon multilayers," Appl. Phys. Lett., Vol. 67, No. 20, 2983-2985, 1995.

26. Berger, M. G., C. Dieker, M. Thoenissen, L. Vescan, H. Lueth, H. Muender, W. Theiss, M. Wernke, and P. Grosse, "Porosity superlattices: a new class of Si heterostructures," J. Phys. D, Vol. 27, No. 6, 1333, 1994.

27. Berger, M. G., M. Thoenissen, R. Arens-Fischer, H. Munder, H. Luth, M. Arntzen, W. Thei, "Investigation and design of optical properties of porosity superlattices," Thin Solid Films, Vol. 255, No. 1–2, 313-316, 1995.

28. Frohnhoff, S. and M. G. Berger, "Porous silicon superlattices," Adv. Mater., Vol. 6, No. 12, 963-965, 1994.

29. Pellegrini, V., A. Tredicucci, C. Mazzoleni, and L. Pavesi, "Enhanced optical properties in porous silicon microcavities," Physical Review B, Vol. 52, No. 20, R14328, 1995.

30. Pavesi, L., C. Mazzoleni, A. Tredicucci, and V. Pellegrini, "Controlled photon emission in porous silicon microcavities," Appl. Phys. Lett., Vol. 67, No. 22, 3280-3282, 1995.

31. Lorenzo, E., C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, "Porous silicon-based rugate filters," Appl. Opt., Vol. 44, No. 26, 5415-5421, 2005.

32. Berger, M. G., R. Arens-Fischer, M. Thonissen, M. Kruger, S. Billat, H. Luth, S. Hilbrich, W. Theiß, P. Grosse, "Dielectric filters made of PS: Advanced performance by oxidation and new layer structures," Thin Solid Films, Vol. 297, No. 1–2, 237-240, 1997.

33. Arrand, H. F., T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, "The application of porous silicon to optical waveguiding technology," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 6, 975-982, 1998.

34. Loni, A., L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films, Vol. 276, No. 1–2, 143-146, 1996.

35. Nagata, S., C. Domoto, T. Nishimura, and K. Iwameji, "Single-mode optical waveguide fabricated by oxidization of selectively doped titanium porous silicon," Appl. Phys. Lett., Vol. 72, No. 23, 2945-2947, 1998.

36. Ferrand, P., R. Romestain, and J. C. Vial, "Photonic band-gap properties of a porous silicon periodic planar waveguide," Physical Review B, Vol. 63, No. 11, 115106, 2001.

37. Sapienza, R., P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, "Optical analogue of electronic bloch oscillations," Phys. Rev. Lett., Vol. 91, No. 26, 263902, 2003.

38. Guillermain, E., V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, "Bragg surface wave device based on porous silicon and its application for sensing," Appl. Phys. Lett., Vol. 90, No. 24, 241116-3, 2007.

39. Dal Negro, L., C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of fibonacci quasicrystals," Phys. Rev. Lett., Vol. 90, No. 5, 055501, 2003.

40. Sailor, M. J. and E. C. Wu, "Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles," Advanced Functional Materials, Vol. 19, No. 20, 3195-3208, 2009.

41. Spanier, J. E. and I. P. Herman, "Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films," Physical Review B, Vol. 61, No. 15, 10437, 2000.

42. Syshchyk, O., V. A. Skryshevsky, O. O. Soldatkin, and A. P. Soldatkin, "Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals," Biosensors and Bioelectronics, Vol. 66, 89-94, 2015.

43. Melnyk, Y., K. Pavlova, V. Myndrul, R. Viter, V. Smyntyna, and I. Iatsunskyi, "Porous silicon photoluminescence biosensor for rapid and sensitive detection of toxins," SPIE Organic Photonics+ Electronics, 6, SPIE, 2017.

44. Myndrul, V., R. Viter, M. Savchuk, M. Koval, N. Starodub, V. Silamikelis, V. Smyntyna, A. Ramanavicius, and I. Iatsunskyi, "Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1," Talanta, Vol. 175, 297-304, 2017.

45. Park, J.-H., L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, "Biodegradable luminescent porous silicon nanoparticles for in vivo applications," Nat. Mater., Vol. 8, No. 4, 331-336, 2009.

46. Gu, L., D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, "In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles," Nature Communication, Vol. 4, 2326, 2013.

47. Kim, D., J. Kang, T. Wang, H. G. Ryu, J. M. Zuidema, J. Joo, M. Kim, Y. Huh, J. Jung, K. H. Ahn, K. H. Kim, and M. J. Sailor, "Two-photon in vivo imaging with porous silicon nanoparticles," Adv. Mater., Vol. 29, No. 39, 1703309, 2017.

48. Chen, X., F. Wo, Y. Jin, J. Tan, Y. Lai, and J. Wu, "Drug-porous silicon dual luminescent system for monitoring and inhibition of wound infection," ACS Nano, Vol. 11, No. 8, 7938-7949, 2017.

49. Song, S., L. Wang, J. Li, C. Fan, and J. Zhao, "Aptamer-based biosensors," TrAC Trends in Analytical Chemistry, Vol. 27, No. 2, 108-117, 2008.

50. Urmann, K., J.-G. Walter, T. Scheper, and E. Segal, "Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds," Analytical Chemistry, Vol. 87, No. 3, 1999-2006, 2015.

51. Hamula, C. L. A., H. Zhang, F. Li, Z. Wang, X. Chris Le, and X.-F. Li, "Selection and analytical applications of aptamers binding microbial pathogens," TrAC Trends in Analytical Chemistry, Vol. 30, No. 10, 1587-1597, 2011.

52. Urmann, K., S. Arshavsky-Graham, J. G. Walter, T. Scheper, and E. Segal, "Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors," Analyst, Vol. 141, No. 18, 5432-5440, 2016.

53. Tombelli, S., M. Minunni, and M. Mascini, "Analytical applications of aptamers," Biosensors and Bioelectronics, Vol. 20, No. 12, 2424-2434, 2005.

54. Mairal, T., V. Cengiz Ozalp, P. Lozano Sanchez, M. Mir, I. Katakis, and C. K. O’Sullivan, "Aptamers: Molecular tools for analytical applications," Analytical and Bioanalytical Chemistry, Vol. 390, No. 4, 989-1007, 2008.

55. Kirsch, J., C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, "Biosensor technology: Recent advances in threat agent detection and medicine," Chemical Society Reviews, Vol. 42, No. 22, 8733-8768, 2013.

56. Chhasatia, R., M. J. Sweetman, F. J. Harding, M. Waibel, T. Kay, H. Thomas, T. Loudovaris, and N. H. Voelcker, "Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor," Biosensors and Bioelectronics, Vol. 91, 515-522, 2017.

57. Urmann, K., P. Reich, J.-G. Walter, D. Beckmann, E. Segal, and T. Scheper, "Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures," Journal of Biotechnology, Vol. 257, 171-177, 2017.

58. Tenenbaum, E. and E. Segal, "Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound," Analyst, Vol. 140, No. 22, 7726-7733, 2015.

59. Naveas, N., J. Hernandez-Montelongo, R. Pulido, V. Torres-Costa, R. Villanueva-Guerrero, J. P. Garcıa Ruiz, and M. Manso-Silva, "Fabrication and characterization of a chemically oxidized-nanostructured porous silicon based biosensor implementing orienting protein A," Colloids and Surfaces B: Biointerfaces, Vol. 115, 310-316, 2014.

60. Mariani, S., L. M. Strambini, and G. Barillaro, "Femtomole detection of proteins using a label-free nanostructured porous silicon interferometer for perspective ultrasensitive biosensing," Analytical Chemistry, Vol. 88, No. 17, 8502-8509, 2016.

61. Mariani, S., L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, "10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors," ACS Sensors, Vol. 1, No. 12, 1471-1479, 2016.

62. Mariani, S., L. M. Strambini, L. Tedeschi, and G. Barillaro, "Interferogram average over wavelength spectroscopy: An ultrasensitive technique for biosensing with porous silicon interferometers," ECS Transactions, Vol. 77, No. 11, 1815-1823, 2017.

63. Vilensky, R., M. Bercovici, and E. Segal, "Oxidized porous silicon nanostructures enabling electrokinetic transport for enhanced DNA detection," Adv. Funct. Mater., Vol. 25, No. 43, 6725-6732, 2015.

64. Arshavsky-Graham, S., R. Vilenski, F. Faratore, M. Bercovici, and E. Segal, "1,000-fold sensitivity enhancement of porous Si-based optical biosensors for nucleic acid and proteins detection," Optics in the Life Sciences Congress, Optical Society of America, , , OmM4D.6, 2017.

65. Nair, P. R. and M. A. Alam, "Performance limits of nanobiosensors," Applied Physics Letters, Vol. 88, No. 23, 233120, 2006.

66. Sheehan, P. E. and L. J. Whitman, "Detection limits for nanoscale biosensors," Nano Letters, Vol. 5, No. 4, 803-807, 2005.

67. Kumar, N., E. Froner, R. Guider, M. Scarpa, and P. Bettotti, "Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors," Analyst, Vol. 139, No. 6, 1345-1349, 2014.

68. Zhao, Y., G. Gaur, S. T. Retterer, P. E. Laibinis, and S. M. Weiss, "Flow-through porous silicon membranes for real-time label-free biosensing," Analytical Chemistry, Vol. 88, No. 22, 10940-10948, 2016.

69. Gupta, B., K. Mai, S. B. Lowe, D. Wakefield, N. Di Girolamo, K. Gaus, P. J. Reece, and J. J. Gooding, "Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals," Analytical Chemistry, Vol. 87, No. 19, 9946-9953, 2015.

70. Soeriyadi, A. H., B. Gupta, P. J. Reece, and J. J. Gooding, "Optimising the enzyme response of a porous silicon photonic crystal via the modular design of enzyme sensitive polymers," Polymer Chemistry, Vol. 5, No. 7, 2333-2341, 2014.

71. Rong, G., J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, "Label-free porous silicon membrane waveguide for DNA sensing," Applied Physics Letters, Vol. 93, No. 16, 161109, 2008.

72. Rong, G., A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguide for label-free DNA sensing," Biosensors and Bioelectronics, Vol. 23, No. 10, 1572-1576, 2008.

73. Wei, X., C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, "Grating couplers on porous silicon planar waveguides for sensing applications," J. Appl. Phys., Vol. 104, No. 12, 123113, 2008.

74. Wei, X. and S. M. Weiss, "Guided mode biosensor based on grating coupled porous silicon waveguide," Opt. Express, Vol. 19, 2011.

75. Wei, X., J. W. Mares, Y. D. Gao, D. Li, and S. M. Weiss, "Biomolecule kinetics measurements in flow cell integrated porous silicon waveguides," Biomed. Opt. Express, Vol. 3, 2012.

76. Qiao, H., A. H. Soeriyadi, B. Guan, P. J. Reece, and J. J. Gooding, "The analytical performance of a porous silicon Bloch surface wave biosensors as protease biosensor," Sensors and Actuators B: Chemical, Vol. 211, No. Supplement C, 469-475, 2015.

77. Zhao, Y., G. A. Rodriguez, Y. M. Graham, T. Cao, G. Gaur, and S. M. Weiss, "Resonant photonic structures in porous silicon for biosensing," SPIE BiOS, 10, 2017.

78. Rodriguez, G. A., J. D. Ryckman, Y. Jiao, and S. M. Weiss, "A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor," Biosensors and Bioelectronics, Vol. 53, 486-493, 2014.

79. Rodriguez, G. A., J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, "Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules," Nanoscale Research Letters, Vol. 9, No. 1, 383, 2014.

80. Rodriguez, G. A., S. Hu, and S. M. Weiss, "Porous silicon ring resonator for compact, high sensitivity biosensing applications," Opt. Express, Vol. 23, No. 6, 7111-7119, 2015.

81. Krismastuti, F. S. H., S. Pace, and N. H. Voelcker, "Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection," Advanced Functional Materials, Vol. 24, No. 23, 3639-3650, 2014.

82. Jenie, S. N. A., Z. Du, S. J. P. McInnes, P. Ung, B. Graham, S. E. Plush, and N. H. Voelcker, "Biomolecule detection in porous silicon based microcavities via europium luminescence enhancement," Journal of Materials Chemistry B, Vol. 2, No. 44, 7694-7703, 2014.

83. Jenie, S. N. A., B. Prieto-Simon, and N. H. Voelcker, "Development of l-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers," Biosensors and Bioelectronics, Vol. 74, 637-643, 2015.

84. Krismastuti, F. S. H., A. Cavallaro, B. Prieto-Simon, and N. H. Voelcker, "Toward multiplexing detection of wound healing biomarkers on porous silicon resonant microcavities," Advanced Science, Vol. 3, No. 6, 1500383, 2016.

85. Jenie, S. N. A., S. E. Plush, and N. H. Voelcker, "Recent advances on luminescent enhancement-based porous silicon biosensors," Pharmaceutical Research, Vol. 33, No. 10, 2314-2336, 2016.

86. Li, Y., Z. Jia, G. Lv, H. Wen, P. Li, H. Zhang, and J. Wang, "Detection of Echinococcus granulosus antigen by a quantum dot/porous silicon optical biosensor," Biomed. Opt. Express, Vol. 8, No. 7, 3458-3469, 2017.

87. Alivisatos, A. P., "Perspectives on the physical chemistry of semiconductor nanocrystals," J. Phys. Chem.-Us, Vol. 100, No. 31, 13226-13239, 1996.

88. Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science, Vol. 281, No. 5385, 2013-2016, 1998.

89. Dasog, M., J. Kehrle, B. Rieger, and J. G. C. Veinot, "Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications," Angewandte Chemie International Edition, Vol. 55, No. 7, 2322-2339, 2016.

90. Gonzalez, C. M. and J. G. C. Veinot, "Silicon nanocrystals for the development of sensing platforms," J. Mater. Chem. C, Vol. 4, No. 22, 4836-4846, 2016.

91. Su, Y., X. Ji, and Y. He, "Water-dispersible fluorescent silicon nanoparticles and their optical applications," Adv. Mater., Vol. 28, No. 47, 10567-10574, 2016.

92. Peng, X., L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature, Vol. 404, No. 6773, 59-61, 2000.

93. McVey, B. F. P., J. Butkus, J. E. Halpert, J. M. Hodgkiss, and R. D. Tilley, "Solution synthesis and optical properties of transition-metal-doped silicon nanocrystals," The Journal of Physical Chemistry Letters, Vol. 6, No. 9, 1573-1576, 2015.

94. Kramer, N. J., K. S. Schramke, and U. R. Kortshagen, "Plasmonic properties of silicon nanocrystals doped with boron and phosphorus," Nano Letters, Vol. 15, No. 8, 5597-5603, 2015.

95. Dasog, M., G. B. De los Reyes, L. V. Titova, F. A. Hegmann, and J. G. Veinot, "Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups," ACS Nano, Vol. 8, No. 9, 9636-9648, 2014.

96. Sinelnikov, R., M. Dasog, J. Beamish, A. Meldrum, and J. G. C. Veinot, "Revisiting an ongoing debate: What role do surface groups play in silicon nanocrystal photoluminescence?," ACS Photonics, Vol. 4, No. 8, 1920-1929, 2017.

97. Herman, F., "The electronic energy band structure of silicon and germanium," Proceedings of the IRE, Vol. 43, No. 12, 1703-1732, 1955.

98. Heath, J. R., "A liquid-solution-phase synthesis of crystalline silicon," Science, Vol. 258, No. 5085, 1131-1133, 1992.

99. Jurbergs, D., E. Rogojina, L. Mangolini, and U. Kortshagen, "Silicon nanocrystals with ensemble quantum yields exceeding 60%," Appl. Phys. Lett., Vol. 88, No. 23, 2006.

100. Kelly, J. A., A. M. Shukaliak, M. D. Fleischauer, and J. G. Veinot, "Size-dependent reactivity in hydrosilylation of silicon nanocrystals," J. Am Chem. Soc., Vol. 133, No. 24, 9564-9571, 2011.

101. Cheng, X., R. Gondosiswanto, S. Ciampi, P. J. Reece, and J. J. Gooding, "One-pot synthesis of colloidal silicon quantum dots and surface functionalization via thiol-ene click chemistry," Chem. Commun. (Camb), Vol. 48, No. 97, 11874-11876, 2012.

102. Hessel, C. M., D. Reid, M. G. Panthani, M. R. Rasch, B. W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, and B. A. Korgel, "Synthesis of ligand-stabilized silicon nanocrystals with sizedependent photoluminescence spanning visible to near-infrared wavelengths," Chem. Mater., Vol. 24, No. 2, 393-401, 2012.

103. Locritani, M., Y. Yu, G. Bergamini, M. Baroncini, J. K. Molloy, B. A. Korgel, and P. Ceroni, "Silicon nanocrystals functionalized with pyrene units: efficient light-harvesting antennae with bright near-infrared emission," J. Phys. Chem. Lett., Vol. 5, No. 19, 3325-3329, 2014.

104. Yu, Y., C. M. Hessel, T. D. Bogart, M. G. Panthani, M. R. Rasch, and B. A. Korgel, "Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes," Langmuir, Vol. 29, No. 5, 1533-1540, 2013.

105. Kang, Z., C. H. A. Tsang, Z. Zhang, M. Zhang, N.-B. Wong, J. A. Zapien, Y. Shan, and S.-T. Lee, "A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: From quantum dots to nanowires," Journal of the American Chemical Society, Vol. 129, No. 17, 5326-5327, 2007.

106. Kang, Z. H., C. H. A. Tsang, N. B. Wong, Z. D. Zhang, and S. T. Lee, "Silicon quantum dots: A general photocatalyst for reduction, decomposition, and selective oxidation reactions," Journal of the American Chemical Society, Vol. 129, No. 40, 12090-12090+, 2007.

107. Hong, G., A. L. Antaris, and H. Dai, "Near-infrared fluorophores for biomedical imaging," Nature Biomedical Engineering, Vol. 1, 0010, 2017.

108. Zhong, Y., F. Peng, X. Wei, Y. Zhou, J. Wang, X. Jiang, Y. Su, S. Su, S.-T. Lee, and Y. He, "Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands," Angewandte Chemie International Edition, Vol. 51, No. 34, 8485-8489, 2012.

109. Zhong, Y., F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, and Y. He, "Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes," Journal of the American Chemical Society, Vol. 135, No. 22, 8350-8356, 2013.

110. He, Y., Y. L. Zhong, F. Peng, X. P. Wei, Y. Y. Su, Y. M. Lu, S. Su, W. Gu, L. S. Liao, and S. T. Lee, "One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots," Journal of the American Chemical Society, Vol. 133, No. 36, 14192-14195, 2011.

111. Hua, F., M. T. Swihart, and E. Ruckenstein, "Efficient surface grafting of luminescent silicon," Langmuir, Vol. 21, No. 13, 6054-6062, 2005.

112. Zhong, Y., F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, and Y. He, "Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes," Journal of the American Chemical Society, 2013.

113. Tilley, R. D. and K. Yamamoto, "The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals," Adv. Mater., Vol. 18, No. 15, 2053-2056, 2006.

114. Yang, C.-S., R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, and G. R. Delgado, "Synthesis of alkyl-terminated silicon nanoclusters by a solution route," Journal of the American Chemical Society, Vol. 121, No. 22, 5191-5195, 1999.

115. Bley, R. A. and S. M. Kauzlarich, "A low-temperature solution phase route for the synthesis of silicon nanoclusters," Journal of the American Chemical Society, Vol. 118, No. 49, 12461-12462, 1996.

116. Mayeri, D., B. L. Phillips, M. P. Augustine, and S. M. Kauzlarich, "NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi," Chem. Mater., Vol. 13, No. 3, 765-770, 2001.

117. Prabakar, S., A. Shiohara, S. Hanada, K. Fujioka, K. Yamamoto, and R. D. Tilley, "Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications," Chem. Mater., Vol. 22, No. 2, 482-486, 2010.

118. Shiohara, A., S. Prabakar, A. Faramus, C. Y. Hsu, P. S. Lai, P. T. Northcote, and R. D. Tilley, "Sized controlled synthesis, purification, and cell studies with silicon quantum dots," Nanoscale, Vol. 3, No. 8, 3364-3370, 2011.

119. Cheng, X., S. B. Lowe, S. Ciampi, A. Magenau, K. Gaus, P. J. Reece, and J. J. Gooding, "Versatile ‘click chemistry’ approach to functionalizing silicon quantum dots: Applications toward fluorescent cellular imaging," Langmuir, Vol. 30, No. 18, 5209-5216, 2014.

120. Cheng, X., E. Hinde, D.M. Owen, S. B. Lowe, P. J. Reece, K. Gaus, and J. J. Gooding, "Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: Application to silicon quantum dots (SiQDs)," Adv. Mater., Vol. 27, No. 40, 6144-6150, 2015.

121. Dasog, M., Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, and J. G. Veinot, "Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals," ACS Nano, Vol. 7, No. 3, 2676-2685, 2013.

122. Li, Q., Y. He, J. Chang, L. Wang, H. Chen, Y. W. Tan, H. Wang, and Z. Shao, "Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature," J. Am. Chem. Soc., Vol. 135, No. 40, 14924-14927, 2013.

123. Wang, L., Q. Li, H.-Y. Wang, J.-C. Huang, R. Zhang, Q.-D. Chen, H.-L. Xu, W. Han, Z.- Z. Shao, and H.-B. Sun, "Ultrafast optical spectroscopy of surface-modified silicon quantum dots: Unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence," Light: Science & Applications, Vol. 4, No. 1, e245, 2015.

124. Li, Q., T.-Y. Luo, M. Zhou, H. Abroshan, J. Huang, H. J. Kim, N. L. Rosi, Z. Shao, and R. Jin, "Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law," ACS Nano, Vol. 10, No. 9, 8385-8393, 2016.

125. Mangolini, L., E. Thimsen, and U. Kortshagen, "High-yield synthesis of luminescent silicon quantum dots in a continuous flow non-thermal plasma reactor," Amorphous and Nanocrystalline Silicon Science and Technology-2005, Vol. 862, 307-312, R.W. Collins, P. C. Taylor, M. Kondo, R. Carius, R. Biswas, Eds., 2005.

126. Mangolini, L. and U. Kortshagen, "Plasma-assisted synthesis of silicon nanocrystal inks," Adv. Mater., Vol. 19, No. 18, 2513-+, 2007.

127. Zhou, S., Z. Ni, Y. Ding, M. Sugaya, X. Pi, and T. Nozaki, "Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron," ACS Photonics, Vol. 3, No. 3, 415-422, 2016.

128. Ni, Z., L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z.Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, "Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors," ACS Nano, Vol. 11, No. 10, 9854-9862, 2017.

129. Yu, T., F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, "Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors," Advanced Materials, Vol. 28, No. 24, 4912-4919, 2016.

130. Rowe, D. J., J. S. Jeong, K. A. Mkhoyan, and U. R. Kortshagen, "Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance," Nano Letters, Vol. 13, No. 3, 1317-1322, 2013.

131. Howes, P. D., R. Chandrawati, and M. M. Stevens, "Colloidal nanoparticles as advanced biological sensors," Science, Vol. 346, No. 6205, 2014.

132. Ma, Y., Y. Yamamoto, P. R. Nicovich, J. Goyette, J. Rossy, J. J. Gooding, and K. Gaus, "A FRET sensor enables quantitative measurements of membrane charges in live cells," Nat. Biotech., Vol. 35, No. 4, 363-370, 2017.

133. Zhang, C. Y., H. C. Yeh, M. T. Kuroki, and T. H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater., Vol. 4, No. 11, 826-831, 2005.

134. Medintz, I. L., A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, "Self-assembled nanoscale biosensors based on quantum dot FRET donors," Nat. Mater., Vol. 2, No. 9, 630-638, 2003.

135. Ban, R., F. Zheng, and J. Zhang, "A highly sensitive fluorescence assay for 2,4,6-trinitrotoluene using amine-capped silicon quantum dots as a probe," Analytical Methods, Vol. 7, No. 5, 1732-1737, 2015.

136. Zhang, X., X. Chen, S. Kai, H.-Y. Wang, J. Yang, F.-G. Wu, and Z. Chen, "Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles," Analytical Chemistry, Vol. 87, No. 6, 3360-3365, 2015.

137. Zhang, J. and S.-H. Yu, "Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions," Nanoscale, Vol. 6, No. 8, 4096-4101, 2014.

138. Cheng, X., B. F. P. McVey, A. B. Robinson, G. Longatte, P. B. O’Mara, V. T. G. Tan, P. Thordarson, R. D. Tilley, K. Gaus, and J. Justin Gooding, "Protease sensing using nontoxic silicon quantum dots," BIOMEDO, Vol. 22, No. 8, 2017.

139. Ruizendaal, L., S. P. Pujari, V. Gevaerts, J. M. Paulusse, and H. Zuilhof, "Biofunctional silicon nanoparticles by means of thiol-ene click chemistry," Chem. Asian J., Vol. 6, No. 10, 2776-2786, 2011.

140. Cheng, X., B. F. P. McVey, A. B. Robinson, L. Guillaume, P. B. O’Mara, V. T. G. Tan, T. Pall, R. D. Tilley, G. Katharina, and G. John Justin, "Protease sensing using nontoxic silicon quantum dots," Journal of Biomedical Optics, Vol. 22, No. 8, 1, 2017.

141. Medintz, I. L., H. T. Uyeda, E. R. Goldman, and H. Mattoussi, "Quantum dot bioconjugates for imaging, labelling and sensing," Nat. Mater., Vol. 4, No. 6, 435-446, 2005.

142. Diaz, S. A., A. P. Malonoski, K. Susumu, R. V. Hofele, E. Oh, and I. L. Medintz, "Probing the kinetics of quantum dot-based proteolytic sensors," Anal. Bioanal. Chem., Vol. 407, No. 24, 7307-7318, 2015.

143. Ji, X., F. Peng, Y. Zhong, Y. Su, X. Jiang, C. Song, L. Yang, B. Chu, S.-T. Lee, and Y. He, "Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy," Advanced Materials, Vol. 27, No. 6, 1029-1034, 2015.

144. Song, C., Y. Zhong, X. Jiang, F. Peng, Y. Lu, X. Ji, Y. Su, and Y. He, "Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells," Anal. Chem., Vol. 87, No. 13, 6718-6723, 2015.

145. Jiang, A., B. Song, X. Ji, F. Peng, H. Wang, Y. Su, and Y. He, "Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency," Nano Res., 2017.

146. Ji, X., F. Peng, Y. Zhong, Y. Su, X. Jiang, C. Song, L. Yang, B. Chu, S. T. Lee, and Y. He, "Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy," Adv. Mater., Vol. 27, No. 6, 1029-1034, 2015.

147. Hinde, E., K. Thammasiraphop, H. T. T. Duong, J. Yeow, B. Karagoz, C. Boyer, J. J. Gooding, and K. Gaus, "Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release," Nature Nanotechnology, Vol. 12, 81, 2016.

© Copyright 2014 EMW Publishing. All Rights Reserved