PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 161 > pp. 125-133

A WIDE-ANGLE AND WIDE-BAND CIRCULAR POLARIZER USING A BI-LAYER METASURFACE

By B.-Q. Lin, J. Guo, Y. Wang, Z. Wang, B. Huang, and X. Liu

Full Article PDF (501 KB)

Abstract:
In this work, a wide-angle and wide-band transmission-type circular polarizer based on a bi-layer anisotropic metasurface is proposed, in which the unit cell consists of two layers of identical patterned metal films deposited on the two sides of a homogeneous dielectric layer, and the geometric pattern of the metal film is a square aperture surrounding a concentric square-corner-truncated square patch. The simulated results show that the polarizer can realize a linear-to-circular polarization conversion at both x- and y-polarized incidences in the frequency range from 7.63 to 11.13 GHz with a relative bandwidth of 37.3%, and it can maintain a stable polarization conversion performance under large-range incidence angles. Moreover, it has no asymmetric transmission effect, and the transmission coefficients at x- and y-polarized incidences are completely equal. Finally, one experiment is carried out, and the simulated and measured results are almost in agreement with each other.

Citation:
B.-Q. Lin, J. Guo, Y. Wang, Z. Wang, B. Huang, and X. Liu, "A Wide-Angle and Wide-Band Circular Polarizer Using a BI-Layer Metasurface," Progress In Electromagnetics Research, Vol. 161, 125-133, 2018.
doi:10.2528/PIER18010922
http://www.jpier.org/PIER/pier.php?paper=18010922

References:
1. Kajiwara, A., "Line-of-sight indoor radio communication using circularly polarized waves," IEEE Trans. Veh. Technol., Vol. 44, No. 3, 487-493, 1995.
doi:10.1109/25.406616

2. Young, L., L. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Trans. Antennas and Propa., Vol. 21, No. 3, 376-378, 1973.
doi:10.1109/TAP.1973.1140503

3. Huang, Y. H., Y. Zhou, and S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Optics Express, Vol. 15, No. 10, 6414-6419, 2007.
doi:10.1364/OE.15.006414

4. Chen, H., J. Wang, and H. Ma, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, No. 15, 154504, 2014.
doi:10.1063/1.4869917

5. Gao, X., X. Han, and W. P. Cao, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas & Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392

6. Sui, S., et al., "Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces," Applied Physics Letters, Vol. 109, No. 1, 063908, 2016.
doi:10.1063/1.4955412

7. Khan, M. I., Q. Fraz, and F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," Journal of Applied Physics, Vol. 121, No. 4, 045103, 2017.
doi:10.1063/1.4974849

8. Su, P., Y. Zhao, S. Jia, et al., "An ultra-wideband and polarization-independent metasurface for RCS reduction," Scientific Reports, Vol. 6, 20387, 2016.

9. Zhao, J. and Y. Cheng, "A high-efficiency and broad band reflective 90 linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6

10. Cheng, Y. Z., C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, "Design of an ultra-broad band and high-efficient reflective linear polarization convertor at optical frequency," IEEE Photonics Journal, Vol. 8, 7805509, 2016.

11. Sun, H., et al., "Ultra-wideband and broad-angle linear polarization conversion metasurface," Journal of Applied Physics, Vol. 121, No. 17, 1304-1404, 2017.
doi:10.1063/1.4982916

12. Zhao, J. C. and Y. Z. Cheng, "Ultra-broad band and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik — International Journal for Light and Electron Optics, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006

13. Fang, C., Y. Cheng, Z. He, J. Zhao, and R. Gong, "Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface,", Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002

14. Xu, P., S. Y. Wang, and G. Wen, "A linear polarization converter with near unity efficiency in microwave regime," Journal of Applied Physics, Vol. 121, No. 14, 1804-1949, 2017.
doi:10.1063/1.4979880

15. Xu, K. K., Z. Y. Xiao, and J. Y. Tang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.
doi:10.1016/j.physe.2016.03.015

16. Zhou, G., et al., "Designing perfect linear polarization converters using perfect electric and magnetic conducting surfaces," Scientific Reports, Vol. 6, 38925, 2016.
doi:10.1038/srep38925

17. Huang, C., et al., "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Physical Review B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131

18. Huang, X., et al., "Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial," Applied Physics B, Vol. 117, No. 2, 633-638, 2014.
doi:10.1007/s00340-014-5876-0

19. Xu, Y., et al., "Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial," Optics Express, Vol. 22, No. 21, 25679, 2014.
doi:10.1364/OE.22.025679

20. Liu, D., et al., "Dual-band asymmetric transmission of chiral metamaterial based on complementary U-shaped structure," Applied Physics A, Vol. 118, No. 3, 787-791, 2015.
doi:10.1007/s00339-015-9005-7

21. Fang, S., et al., "Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials," Journal of Applied Physics, Vol. 121, No. 3, 033103, 2017.
doi:10.1063/1.4974477

22. Cheng, Y., R. Gong, and L. Wu, "Ultra-broad band linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4

23. Dou, T., et al., "Broadband asymmetric transmission of linearly polarised wave based on bilayered chiral metamaterial," IET Microwaves Antennas & Propagation, Vol. 11, No. 2, 171-176, 2017.
doi:10.1049/iet-map.2016.0342

24. Kuwata-Gonokami, M., et al., "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett., Vol. 95, No. 22, 227401, 2005.
doi:10.1103/PhysRevLett.95.227401

25. Yan, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, No. 10, 103503-103504, 2013.
doi:10.1063/1.4794940

26. Martinez-Lopez, L., J. Rodriguez-Cuevas, J. I. Martinez-Lopez, and A. E. Martynyuk, "A multilayer circular polarizer based on bisected split-ring frequency selective surfaces," IEEE Antennas & Wireless Propagation Letters, Vol. 13, No. 2, 153-156, 2014.
doi:10.1109/LAWP.2014.2298393

27. Pfeiffer, C., et al., "High performance bianisotropic metasurfaces: Asymmetric transmission of light," Physical Review Letters, Vol. 113, No. 2, 023902, 2014.
doi:10.1103/PhysRevLett.113.023902

28. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501

29. Liu, Y., et al., "Linear polarization to left/right-handed circular polarization conversion using ultrathin planar chiral metamaterials," Applied Physics A, Vol. 123, No. 9, 571, 2017.
doi:10.1007/s00339-017-1167-z

30. Baena, J. D., et al., "Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4124-4133, 2017.
doi:10.1109/TAP.2017.2717964

31. Gansel, J. K., et al., "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513, 2009.
doi:10.1126/science.1177031

32. Gansel, J. K., et al., "Tapered gold-helix metamaterials as improved circular polarizers," Appl. Phys. Lett., Vol. 100, No. 10, 101109-101109-3, 2012.
doi:10.1063/1.3693181

33. Kaschke, J., et al., "Metamaterial for broadband circular polarization conversion," Advanced Optical Materials, Vol. 3, No. 11, 1411-1417, 2015.
doi:10.1002/adom.201500194

34. Chen, M., et al., "Polarization control by using anisotropic 3-D chiral structures," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4687-4694, 2016.
doi:10.1109/TAP.2016.2600758

35. Ji, R., S. W. Wang, X. Liu, X. Chen, and W. Lu, "Broadband circular polarizers constructed using helix-like chiral metamaterials," Nanoscale, Vol. 8, No. 31, 14725-14729, 2016.
doi:10.1039/C6NR01738J


© Copyright 2014 EMW Publishing. All Rights Reserved