Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 161 > pp. 87-100


By C. Liu, M.-H. Yang, and X.-W. Sun

Full Article PDF (3,693 KB)

With the ever-growing requirements of human security check in public, near-field millimeter wave (MMW) imaging techniques have been developing rapidly in recent years. Due to the lack of MMW images, low resolution and indistinguishable texture in most MMW images, it is still a great challenge to do high performance object detection task on MMW images. In this paper, we propose a novel framework to automatically detect concealed weapons and potential dangerous objects based on a single human millimeter wave image, in which a deep convolutional neural network (CNN) is presented to simultaneously extract features, detect suspicious objects, and give the confidence score. Unlike traditional optical image level solutions, we comprehensively analyze the original MMW data for object representation, incorporate domain-specific knowledge to design and train our network. Moreover, combined with the modern focal loss theory, we devise an effective loss function elaborately to optimize our model. Experimental results on both our dataset and real world data show the effectiveness and improvement of our method compared with the state-of-the-arts.

C. Liu, M.-H. Yang, and X.-W. Sun, "Towards Robust Human Millimeter Wave Imaging Inspection System in Real Time with Deep Learning," Progress In Electromagnetics Research, Vol. 161, 87-100, 2018.

1. Chen, H. M., S. Lee, R. M. Rao, M. A. Slaman, and P. K. Varshney, "Imaging for concealed weapon detection," IEEE Signal Process. Mag., Vol. 22, No. 2, 52-61, 2005.

2. Sheen, D. M., D. L. Mcmakin, and T. E. Hal, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 9, 1581-1592, 2001.

3. Sheen, D. M., J. L. Fernandes, D. L. Mcmakin, and R. H. Severtsen, "Wide-bandwidth, widebeamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection," SPIE Defense, Security, and Sensing, 871509, 2013.

4. Zhu, Y., M. Yang, L. Wu, Y. Sun, and X. Sun, "Millimeter-wave holographic imaging algorithm with amplitude corrections," Progress In Electromagnetics Research M, Vol. 49, 33-39, 2016.

5. Lowe, D. G., "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., Vol. 60, No. 2, 91-110, 2004.

6. Dalal, N. and B. Triggs, "Histograms of oriented gradients for human detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 886-893, 2005.

7. Ren, S., K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 39, No. 6, 1137-1149, 2017.

8. Yao, J., M. Yang, Y. Zhu, L. Wu, and X. Sun, "Using convolutional neural network to localize forbidden object in millimeter-wave image," J. Infrared Millim. Waves, Vol. 36, No. 3, 354-360, 2017.

9. Zhu, Y., M. Yang, L. Wu, Y. Sun, and X. Sun, "Practical millimeter-wave holographic imaging system with good robustness," Chinese Opt. Lett., Vol. 14, No. 10, 43-47, 2016.

10. Girshick, R., J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 580-587, 2014.

11. Girshick, R., "Fast R-CNN," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1440-1448, 2015.

12. Lecun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol. 521, No. 7553, 436-444, 2015.

13. Yeom, S., D. S. Lee, J. Y. Son, and S. H. Kim, "Concealed object detection using passive millimeter wave imaging," Proc. IEEE Universal Commun. Symp., 383-386, 2010.

14. Xiao, Z., X. Lu, J. Yan, L. Wu, and L. Ren, "Automatic detection of concealed pistols using passive millimeter wave imaging," Proc. IEEE Int. Conf. Imaging Syst. Techn., 1-4, 2015.

15. Tapia, S. L., R. Molina, and N. P. Blanca, "Detection and localization of objects in Passive Millimeter Wave images," Proc. IEEE Signal Process. Conf., 2101-2105, 2016.

16. Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 779-788, 2016.

17. Redmon, J. and A. Farhadi, "YOLO9000: Better, faster, stronger," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 6517-6525, 2017.

18. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Proc. Neural Inform. Process. Syst., 1097-1105, 2012.

19. Lin, T. Y., P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for dense object detection," Proc. IEEE Int. Conf. Comput. Vis., 2999-3007, 2017.

20. Deng, J., W. Dong, R. Socher, and L. J. Li, "ImageNet: A large-scale hierarchical image database," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 248-255, 2009.

21. Rumelhart, D. E., G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," Readings in Cognitive Science, Vol. 1, No. 2, 399-421, 1988.

22. Zeiler, M. D. and R. Fergus, "Visualizing and understanding convolutional networks," Proc. 13th Eur. Conf. Comput. Vis., 818-833, 2014.

23. Simonyan, K. and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Proc. Int. Conf. Learn. Representations, 2015.

24. He, K., X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 770-778, 2016.

25. Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," Proc. 22nd ACM Int. Conf. Multimedia, 675-678, 2014.

© Copyright 2014 EMW Publishing. All Rights Reserved