PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 165 > pp. 107-117

A CAMOUFLAGE DEVICE WITHOUT METAMATERIALS

By F. Sun, Y. Zhang, J. Evans, and S. He

Full Article PDF (715 KB)

Abstract:
We propose a camouflage device that can greatly reduce scattering in the microwave frequency using only uniform copper plates with no internal structuring (no metamaterials). The camouflage device is designed by optical surface transformation (OST), which is derived from transformation optics but much simpler than transformation optics. The key of our design is to choose suitable arrangement and lengths of these copper plates that satisfy Fabry-Perot condition. The proposed camouflage device can work when the detecting wave comes from a wide-angle range (not only works for some discrete angles). The proposed method will give a new and simple way to design and realize camouflage device.

Citation:
F. Sun, Y. Zhang, J. Evans, and S. He, "A Camouflage Device Without Metamaterials," Progress In Electromagnetics Research, Vol. 165, 107-117, 2019.
doi:10.2528/PIER19080803
http://www.jpier.org/PIER/pier.php?paper=19080803

References:
1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907

2. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nat. Mater., Vol. 9, 387, 2010.
doi:10.1038/nmat2743

3. Sun, F., B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, "Transformation optics: From classic theory and applications to its new branches," Laser Photonics Rev., Vol. 11, 1700034, 2017.
doi:10.1002/lpor.201700034

4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977, 2006.
doi:10.1126/science.1133628

5. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224, 2007.
doi:10.1038/nphoton.2007.28

6. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater., Vol. 12, 25, 2013.
doi:10.1038/nmat3476

7. Shen, L., B. Zheng, Z. Liu, Z. Wang, S. Lin, S. Dehdashti, E. Li, and H. Chen, "Large-scale farinfrared invisibility cloak hiding object from thermal detection," Adv. Opt. Mater., Vol. 3, 1738, 2015.
doi:10.1002/adom.201500267

8. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, 2652, 2013.
doi:10.1038/ncomms3652

9. Zheng, B., R. Zhu, L. Jing, Y. Yang, L. Shen, H. Wang, Z. Wang, X. Zhang, X. Liu, E. Li, and H. Chen, "3D visible-light invisibility cloak," Adv. Sci., Vol. 5, 1800056, 2018.
doi:10.1002/advs.201800056

10. Ma, Y., Y. Liu, L. Lan, T. Wu, W. Jiang, C. K. Ong, and S. He, "First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping," Sci. Rep., Vol. 3, 2182, 2013.
doi:10.1038/srep02182

11. Ma, Y., L. Lan, W. Jiang, F. Sun, and S. He, "A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity," NPG Asia Mater., Vol. 5, e73, 2013.
doi:10.1038/am.2013.60

12. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 106, 024301, 2011.
doi:10.1103/PhysRevLett.106.024301

13. Gomory, F., M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, 1466, 2012.
doi:10.1126/science.1218316

14. Zhu, J., W. Jiang, Y. Liu, G. Yin, J. Yuan, S. He, and Y. Ma, "Three-dimensional magnetic cloak working from dc to 250 kHz," Nat. Commun., Vol. 6, 8931, 2015.
doi:10.1038/ncomms9931

15. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

16. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366, 2009.
doi:10.1126/science.1166949

17. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, 2011.
doi:10.1038/ncomms1176

18. Sun, F. and S. He, "Optical surface transformation: Changing the optical surface by homogeneous optic-null medium at will," Sci. Rep., Vol. 5, 16032, 2015.
doi:10.1038/srep16032

19. Sun, F. and S. He, "Surface transformation with homogenous optic-null medium," Progress In Electromagnetics Research, Vol. 151, 169-173, 2015.
doi:10.2528/PIER15042805

20. Guo, S., F. Sun, and S. He, "Optical surface transformation for reshaping the field intensity distribution," J. Opt. Soc. Am. B, Vol. 33, 1847, 2016.
doi:10.1364/JOSAB.33.001847

21. Sun, F., X. Ge, and S. He, "Creating a zero-order resonator using an optical surface transformation," Sci. Rep., Vol. 6, 21333, 2016.
doi:10.1038/srep21333

22. Sun, F. and S. He, "Overlapping illusions by transformation optics without any negative refraction material," Sci. Rep., Vol. 6, 19130, 2016.
doi:10.1038/srep19130

23. Sun, F. and S. He, "Waveguide bends by optical surface transformations and optic-null media," J. Opt. Soc. Am. B, Vol. 35, 944, 2018.
doi:10.1364/JOSAB.35.000944

24. Sun, F. and S. He, "Optic-null space medium for cover-up cloaking without any negative refraction index materials," Sci. Rep., Vol. 6, 29280, 2016.
doi:10.1038/srep29280

25. Sun, F. and S. He, "Subwavelength focusing by optical surface transformation," Opt. Commun., Vol. 427, 139, 2018.
doi:10.1016/j.optcom.2018.06.029

26. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903

27. Sadeghi, M. M., S. Li, L. Xu, B. Hou, and H. Chen, "Transformation optics with Fabry-PĀ“erot resonances," Sci. Rep., Vol. 5, 8680, 2015.
doi:10.1038/srep08680

28. Zheng, B., Y. Yang, Z. Shao, Q. Yan, N. H. Shen, L. Shen, H. Wang, E. Li, C. M. Soukoulis, and H. Chen, "Experimental realization of an extreme-parameter omnidirectional cloak," Research, Vol. 2019, 8282641, 2019.

29. Zhang, Y., Y. Luo, J. B. Pendry, and B. Zhang, "Transformation-invariant metamaterials," Phys. Rev. Lett., Vol. 123, 067701, 2019.
doi:10.1103/PhysRevLett.123.067701

30. Sun, F. and S. He, "Extending the scanning angle of a phased array antenna by using a null-space medium," Sci. Rep., Vol. 4, 6832, 2014.
doi:10.1038/srep06832

31. He, S. and F. Sun, "A new invisibility structure in upper air,", Chinese Patent; public number: CN108808259A (publication date: November 13, 2018), https://www.tianyancha.com/patent/acee8373a11f5d53301f05da263799fd.

32. He, S., F. Sun, and Y. Liu, "A novel optical retro-reflector and retro-reflection array,", Chinese Patent; public number: CN108415109A (publication date: August 17, 2018), https://www.tianyancha.com/patent/7584015d358172d59ae7dd902a7892f9.


© Copyright 2014 EMW Publishing. All Rights Reserved