Vol. 169

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-11-06

The Multilevel Fast Physical Optics Method for Calculating High Frequency Scattered Fields

By Zhiyang Xue, Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, and Amir Boag
Progress In Electromagnetics Research, Vol. 169, 1-15, 2020
doi:10.2528/PIER20071203

Abstract

The multilevel fast physical optics (MLFPO) is proposed to accelerate the computation of the fields scattered from electrically large coated scatterers. This method is based on the quadratic patch subdivision and the multilevel technology. First, the quadratic patches are employed rather than the planar patches to discretize the considered scatterer. Hence, the number of the contributing patches is cut dramatically, thus making the workload of the MLFPO method much lower than that of the traditional Gordon's method. Next, the multilevel technology is introduced in this work to avoid calculating the physical optics scattered fields from the considered scatterer directly, so that the proposed algorithm can significantly reduce the computational complexity. Finally, numerical results have demonstrated the accuracy and efficiency of the MLFPO method based on the quadratic patches.

Citation


Zhiyang Xue, Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, and Amir Boag, "The Multilevel Fast Physical Optics Method for Calculating High Frequency Scattered Fields," Progress In Electromagnetics Research, Vol. 169, 1-15, 2020.
doi:10.2528/PIER20071203
http://www.jpier.org/PIER/pier.php?paper=20071203

References


    1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, Piscataway, NJ, USA, 1995.

    2. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, New York, NY, USA, 1990.

    3. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

    4. Jin, Y. Q., Electromagnetic Scattering Modelling for Quantitative Remote Sensing, World Science Press, Singapore, 2000.

    5. Tang, L., J. A. Kong, and B. Shin, Theory of Microwave Remote Sensing, IEEE Press, New York, NJ, USA, 1995.

    6. Harrington, R. F., Field Computation by Moment Methods, Wiley, Hoboken, NJ, USA, 2000.

    7. Kulkarni, S., S. Uy, R. Lemdiasov, R. Ludwig, and S. Makarov, "MoM volume integral equation solution for an isolated metal-dielectric resonator with the edge-based basis functions," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1566-1571, Apr. 2005.
    doi:10.1109/TAP.2005.844402

    8. Xiao, L., X. H. Huang, B. Z.Wang, G. Zheng, and P. Chen, "An efficient hybrid method of iterative MoM-PO and equivalent dipole-moment for scattering from electrically large objects," IEEE Trans. Antennas Propag. Lett., Vol. 16, 1723-1726, 2017.
    doi:10.1109/LAWP.2017.2669910

    9. Jin, J. M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley-IEEE Press, Hoboken, NJ, USA, 2014.

    10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd Ed., Artech House, Boston, NJ, USA, 2015.

    11. Yao, J. J., S. Y. He, Y. H. Zhang, H. C. Yin, C. Wang, and G. Q. Zhu, "Evaluation of scattering from electrically large and complex PEC target coated with uniaxial electric anisotropic medium layer based on asymptotic solution in spectral domain," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2175-2186, Apr. 2014.
    doi:10.1109/TAP.2014.2300537

    12. Bhalla, R., H. Ling, J. Moore, D. J. Andersh, S. W. Lee, and J. Hughes, "3D scattering center representation of complex targets using the shooting and bouncing ray technique: A review," IEEE Antennas Propag. Mag., Vol. 40, No. 5, 30-39, Oct. 1998.
    doi:10.1109/74.735963

    13. Domingo, M., F. Rivas, J. Perez, R. P. Torres, and M. F. Catedra, "Computation of the RCS of complex bodies using NURBS surfaces," IEEE Antennas Propag. Mag., Vol. 37, No. 6, 36-47, Dec. 1995.
    doi:10.1109/74.482030

    14. Elking, D. M., J. M. Roedder, D. D. Car, and S. D. Alspach, "A review of high frequency radar cross section analysis capabilities at McDonnell Douglas Aerospace," IEEE Antennas Propag. Mag., Vol. 37, No. 5, 33-43, Oct. 1995.
    doi:10.1109/74.475862

    15. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
    doi:10.2528/PIER12022308

    16. Wu, Y. M., L. J. Jiang, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting quadratic surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
    doi:10.1109/TAP.2013.2259788

    17. Zhang, J., B. Xu, and T. J. Cui, "An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 986-991, Feb. 2014.
    doi:10.1109/TAP.2013.2292937

    18. Fan, T. T., X. Zhou, and T. J. Cui, "Singularity-free contour-integral representations for physicaloptics near-field backscattering problem," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 805-811, Feb. 2017.
    doi:10.1109/TAP.2016.2647581

    19. Roudstein, M., Y. Brick, and A. Boag, "Multilevel physical optics algorithm for near-field double-bounce scattering," IEEE Trans. Antennas Propag., Vol. 63, No. 11, 5015-5025, Nov. 2015.
    doi:10.1109/TAP.2015.2481491

    20. Macdonald, H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913.

    21. Hodges, R. E. and Y. Rahmat-Samii, "Evaluation of dielectric physical optics in electromagnetic scattering," Symp. on Antennas and Propag. (IEEE APS1993), 1742-1745, 1993.
    doi:10.1109/APS.1993.385538

    22. Li, N., W. C. Su, J. Yang, and L. J. Hu, "The bistatic formulae of dielectric objects in physical optics," Symp. on Antennas and Propag. (IEEE APS1993), 1746-1749, 1993.
    doi:10.1109/APS.1993.385539

    23. Cai, W. F., X. G. Liu, H. P. Guo, H. C. Yin, and P. K. Huang, "A concise expression for PO method on electromagnetic scattering by arbitrary shaped conducting targets with partially coating," Environmental Electromagnetics (IEEE CEEM2003), 469-473, 2003.

    24. Li, X., Y. Xie, and R. Yang, "High-frequency method for scattering from coated targets with electrically large size in half space," IET Microw. Antennas Propag., Vol. 3, 181-186, Feb. 2009.
    doi:10.1049/iet-map:20070287

    25. Liu, Z. L. and C. F. Wang, "Shooting and bouncing ray and physical optics for predicting the EM scattering of coated PEC objects," Antennas and Propag. (IEEE APCAP12), 2012.

    26. Mohammadzadeh, H., A. Z. Nezhad, Z. H. Firouzeh, and R. Safian, "Modified physical optics approximation and physical theory of diffraction for RCS calculation of dielectric coated PEC," Symp. on Antennas and Propag. (IEEE APS2013), 1896-1897, 2013.

    27. Gordon, W. B., "Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 7, 590-592, Jul. 1975.

    28. Gordon, W. B., "Near field calculations with far field formulas," Proc. IEEE Trans. Antennas Propag. Soc., Vol. 2, No. 7, 950-953, Jul. 1996.

    29. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Trans. Antennas Propag., Vol. 16, No. 6, 767-769, Nov. 1968.
    doi:10.1109/TAP.1968.1139296

    30. Catedra, M. F., C. Delgado, S. Luceri, and F. S. de Adana, "Efficient procedure for computing fields created by current modes," Electron. Lett., Vol. 39, 763-764, May 2003.
    doi:10.1049/el:20030513

    31. Catedra, M. F., C. Delgado, S. Luceri, O. G. Blanco, and F. S. de Adana, "Physical optics analysis of multiple interactions in large scatters using current modes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 985-994, Mar. 2006.
    doi:10.1109/TAP.2006.869893

    32. Delgado, C., J. M. Gomez, and M. F. Catedra, "Analytical field calculation involving current modes and quadratic phase expressions," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 233-240, Jan. 2007.
    doi:10.1109/TAP.2006.888470

    33. Boag, A., "A fast physical optics (FPO) algorithm for high frequency scattering," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 197-204, Jan. 2004.
    doi:10.1109/TAP.2003.822426

    34. Gendelman, A., Y. Brick, and A. Boag, "Multilevel physical optics algorithm for near field scattering," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4325-4335, Aug. 2014.
    doi:10.1109/TAP.2014.2327648

    35. Brick, Y. and A. Boag, "Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 57, No. 1, 262-273, Jan. 2010.
    doi:10.1109/TUFFC.2010.1404

    36. Boag, A., "A fast iterative physical optics (FIPO) algorithm based on nonuniform polar grid interpolation," Microw. Opt. Technol. Lett., Vol. 35, No. 3, 240-244, Nov. 2002.
    doi:10.1002/mop.10568

    37. Boag, A. and E. Michielssen, "A fast physical optics (FPO) algorithm for double-bounce scattering," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 205-212, Jan. 2004.
    doi:10.1109/TAP.2003.822428

    38. Song, J. M. and W. C. Chew, "Moment method solution using parameter geometry," IEEE Trans. Antennas Propag., Vol. 3, 2242-2245, Jun. 1994.

    39. Li, J., L. J. Jiang, and B. Shanker, "Generalized Debye sources-based EFIE solver on subdivision surfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5376-5386, Oct. 2017.

    40. Bucci, O. M. and G. Franceschetti, "On the spatial bandwidth of scattered fields," IEEE Trans. Antennas Propag., Vol. 35, No. 12, 1445-1455, Dec. 1987.
    doi:10.1109/TAP.1987.1144024