Vol. 170

Latest Volume
All Volumes
All Issues
2021-02-05

A Fine Scale Partially Coherent Patch Model Including Topographical Effects for GNSS-R Ddm Simulations

By Haokui Xu, Jiyue Zhu, Leung Tsang, and Seung Bum Kim
Progress In Electromagnetics Research, Vol. 170, 97-128, 2021
doi:10.2528/PIER20121201

Abstract

In this paper, we propose a fine scale partially coherent patch model (FPCP) for GNSS-R land applications for soil moisture retrieval. The land surface is divided into coherent planar patches on which microwave roughness is superimposed. The scattered waves of the coherent patch are decomposed into the coherent specular reflection and diffuse incoherent scattering. A fine scale of 2 meter patch size is chosen for the coherent patch to be applicable to complex terrain with large varieties of topographical elevations and with small to large topographical slopes. The summation of scattered fields over patches is carried out using physical optics. The phase term of the scattered wave of each patch is kept so that correlation scattering effects among patches are accounted for. Results are illustrated for power ratio for areas near the specular point and areas far away from the specular point. Comparisons are made with the radiative transfer geometric optics model. DDM simulations are performed with good agreement with CYGNSS data.

Citation


Haokui Xu, Jiyue Zhu, Leung Tsang, and Seung Bum Kim, "A Fine Scale Partially Coherent Patch Model Including Topographical Effects for GNSS-R Ddm Simulations," Progress In Electromagnetics Research, Vol. 170, 97-128, 2021.
doi:10.2528/PIER20121201
http://www.jpier.org/PIER/pier.php?paper=20121201

References


    1. Unwin, M., P. Jales, J. Tye, C. Gommenginger, G. Foti, and J. Rosello, "Spaceborne GNSS-reflectometry on TechDemoSat-1: Early mission operations and exploration," IEEE JASTARS, Vol. 9, No. 10, 4525-4539, Oct. 2016.

    2. Ruf, C., et al., "CYGNSS: Enabling the future of hurricane prediction," IEEE Geosci. Remote Sens. Mag., Vol. 1, No. 2, 52-67, 2013.
    doi:10.1109/MGRS.2013.2260911

    3. Clarizia, M. P. and C. S. Ruf, "Wind speed retrieval algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) mission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 8, 4419-4432, 2016.
    doi:10.1109/TGRS.2016.2541343

    4. Li, W., E. Cardellach, F. Fabra, A. Rius, S. Ribo, and M. Martin-Neira, "First spaceborne phase altimetry over sea ice using TechDemosat-1 GNSS-R signals," Geophysical Research Letters, Vol. 44, 8369-8376, 2017.
    doi:10.1002/2017GL074513

    5. Nghiem, S. V., et al., "Wetland monitoring with Global Navigation Satellite System reflectometry," Earth and Space Science, Vol. 4, No. 1, 16-39, 2017.
    doi:10.1002/2016EA000194

    6. Kim, H. and V. Lakshmi, "Use of Cyclone Global Navigation Satellite System (CyGNSS) observations for estimation of soil moisture," Geophysical Research Letters, Vol. 45, No. 16, 8272-8282, Aug. 2018.
    doi:10.1029/2018GL078923

    7. Chew, C. C. and E. E. Small, "Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture," Geophysical Research Letters, Vol. 45, 4049-4057, 2018.
    doi:10.1029/2018GL077905

    8. Clarizia, M. P., N. Pierdicca, F. Costantini, and N. Floury, "Analysis of CYGNSS data for soil moisture retrieval," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 12, No. 7, 2227-2235, Jul. 2019.
    doi:10.1109/JSTARS.2019.2895510

    9. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Macmillan, New York, 1963.

    10. Gu, W., H. Xu, and L. Tsang, "A numerical Kirchhoff simulator for GNSS land applications," Progress In Electromagnetics Research, Vol. 164, 119-133, 2019.
    doi:10.2528/PIER18121803

    11. Bertoni, H., Radio Propagation for Modern Wireless Systems, Prentice Hall, 1999.

    12. Tsang, L., J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wieley Interscience, New York, 2000.
    doi:10.1002/0471224286

    13. Tsang, L., J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, Wieley Interscience, New York, 2000.

    14. Al-Khaldi, M. M., J. T. Johnson, A. J. O’Brien, A. Balenzano, and F. Mattia, "Time series retrieval of soil moisture using CYGNSS," IEEE Transcations on Geoscience and Remote Sensing, Vol. 57, No. 7, Jul. 2019.

    15. Zavorotny, V. and A. Voronovich, "Scattering of GPS signals form the ocean with wind remote sensing application," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, 951-964, Mar. 2000.
    doi:10.1109/36.841977

    16. Campbell, J. D., A. Melebari, and M. Moghaddam, "Modeling the effects of topography on delay-doppler maps," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, 1740-1751, 2020.
    doi:10.1109/JSTARS.2020.2981570

    17. Campbell, J. D., A. Melebari, and M. Moghaddam, "Land forward model matchups with CYGNSS observations in the presence of topography," CYGNSS Science Team Meeting, Ann Arbor, Jun. 2019.

    18. Dente, L., L. Guerriero, D. Comite, and N. Pierdicca, "Space-borne GNSS-R signal over a complex topography: Modeling and validation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, 1218-1233, 2020.
    doi:10.1109/JSTARS.2020.2975187

    19. Zhu, J.-Y., L. Tsang, and H. Xu, "A physical patch model for GNSS-R land applications," Progress In Electromagnetic Research, Vol. 165, 93-105, 2019.
    doi:10.2528/PIER19031003

    20. Al-Khaldi, M. M., J. T. Johnson, S. Gleason, E. Loria, A. J. O’Brien, and Y. Yi, "An algorithm for detecting coherence in cyclone global navigation satellite system mission level-1 delay-doppler maps," IEEE Transactions on Geoscience and Remote Sensing, 1-10, 2020, Early Access.
    doi:10.1109/TGRS.2020.3009784

    21. Bringer, A., C. Toth, and J. T. Johnson, "Land Cal/Val activities: LIDAR campaign update," CYGNSS Science Team Meeting, Ann Arbor, Jun. 2019.

    22. Oh, Y., K. Sarabandi, and F. T. Ulaby, "An empirical model and an inversion technique for radar scattering from bare soil surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, 370-381, Mar. 1992.
    doi:10.1109/36.134086

    23. Huang, S., L. Tsang, E. G. Njoku, and K. S. Chan, "Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of Maxwell Equations in three-dimensional simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2557-2568, Jun. 2010.
    doi:10.1109/TGRS.2010.2040748

    24. Entekhabi, D., et al., "The Soil Moisture Active Passive (SMAP) mission," Proceedings of the IEEE, Vol. 98, No. 5, 704-716, 2010.
    doi:10.1109/JPROC.2010.2043918

    25. Huang, H., S.-B. Kim, L. Tsang, X. Xu, T.-H. Liao, T. J. Jackson, and S. Yueh, "Coherent model of L-band radar scattering by soybean plants: Model development, validation and retrieval," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 9, No. 1, 272-284, Jan. 2015.
    doi:10.1109/JSTARS.2015.2469717

    26. Huang, H., T.-H. Liao, L. Tsang, E. G. Njoku, A. Colliander, T. Jackson, M. S. Brugin, and S. Yueh, "Modelling and validation of combined active and passive microwave remote sensing of agricultural vegetation at L-band," Progress In Electromagnetics Research B, Vol. 78, 91-124, 2017.
    doi:10.2528/PIERB17060303

    27. Chen, K., L. Tsang, K. Chen, T. H. Liao, and J. Lee, "Polarimetric simulations of SAR at L-band over bare soil using scattering matrices of random rough surfaces from numerical three-dimensional solutions of Maxwell equations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 11, 7048-7058, Nov. 2014.
    doi:10.1109/TGRS.2014.2306922

    28. Liao, T.-H., L. Tsang, S. Huang, N. Niamsuwan, S. Jaruwatanadilok, S.-B. Kim, H. Ren, and K.-L. Chen, "Copolarized and cross polarized backscattering from random rough soil surfaces from L-band to Ku-band using numerical solutions of Maxwell’s equations with near-field precondition," IEEE Trans. Geosci. Rem. Sens., Vol. 54, No. 2, 651-662, Feb. 2016.
    doi:10.1109/TGRS.2015.2451671

    29. Kim, S.-B., et al., "Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the soil moisture active-passive satellite and evaluation at core validation sites," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 1897-1914, 2017.
    doi:10.1109/TGRS.2016.2631126

    30. Duren, R., Ed. Wong, B. Breckenridge, S. Shaffer, C. Duncan, E. Tubbs, and P. Salomon, "Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar," SPIE AeroSense Conference on Acquisition, Tracking and Pointing, Apr. 1998.