Vol. 170

Latest Volume
All Volumes
All Issues
2021-01-21

Computational Investigation of Nanoscale Semiconductor Devices and Optoelectronic Devices from the Electromagnetics and Quantum Perspectives by the Finite Difference Time Domain Method (Invited Review)

By Huali Duan, Wenxiao Fang, Wen-Yan Yin, Erping Li, and Wenchao Chen
Progress In Electromagnetics Research, Vol. 170, 63-78, 2021
doi:10.2528/PIER20122201

Abstract

In the simulation of high frequency nanoscale semiconductor devices in which electromagnetic (EM) fields and carrier transport are coupled, and optoelectronic devices in which strong interactions between EM fields and charged particles exist, both the Maxwell's equations and the time-dependent Schrödinger equation (TDSE) need to be solved to capture the interactions between EM and quantum mechanics (QM). One of the numerical simulation methods for solving these equations is the finite difference time domain (FDTD) method. In this review paper, the development of FDTD method applied in EM and QM simulation is discussed. Several widely used FDTD techniques, i.e., explicit, implicit, explicit staggered-time, and Chebyshev methods, for solving the TDSE are introduced and compared. The hybrid approaches based on FDTD method, which are used to solve the Poisson-TDSE and Maxwell-TDSE coupled equations for EM-QM simulation, are also discussed. Furthermore, the applications of these simulation methods for nanoscale semiconductor devices and optoelectronic devices are introduced. Finally, a conclusion is given.

Citation


Huali Duan, Wenxiao Fang, Wen-Yan Yin, Erping Li, and Wenchao Chen, "Computational Investigation of Nanoscale Semiconductor Devices and Optoelectronic Devices from the Electromagnetics and Quantum Perspectives by the Finite Difference Time Domain Method (Invited Review)," Progress In Electromagnetics Research, Vol. 170, 63-78, 2021.
doi:10.2528/PIER20122201
http://www.jpier.org/PIER/pier.php?paper=20122201

References


    1. Chen, Y., Y. Ouyang, J. Guo, and T. X. Wu, "Time-dependent quantum transport and nonquasistatic effects in carbon nanotube transistors," Applied Physics Letters, Vol. 89, 203122, 2006.
    doi:10.1063/1.2388881

    2. Chen, Y. P., W. E. I. Sha, W. C. H. Choy, L. Jiang, and W. C. Chew, "Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function," Optics Express, Vol. 20, No. 18, 20210, 2012.
    doi:10.1364/OE.20.020210

    3. Capua, A., O. Karni, and G. Eisenstein, "A finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell-Schrodinger framework," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 5, 1-10, 2013.
    doi:10.1109/JSTQE.2012.2237014

    4. Yankwich, P. E., "Introduction to quantum mechanics," Journal of the American Chemical Society, Vol. 82, No. 14, 3803-3803, 1960.
    doi:10.1021/ja01499a096

    5. Rae, A. I. M., "The picture book of quantum mechanics," Physics Today, Vol. 49, No. 1, 65-66, 1996.
    doi:10.1063/1.2807471

    6. Chan, T. F., D. Lee, and L. Shen, "Stable explicit schemes for equations of the Schrodinger type," SIAM Journal on Numerical Analysis, Vol. 23, No. 2, 274-281, 1986.
    doi:10.1137/0723019

    7. Chen, J. B. and M. Z. Qinz, "Multi-symplectic Fourier pseudospectral method for the nonlinear Schrodinger equation," Electronic Transactions on Numerical Analysis Etna, Vol. 12, 193-204, 2001.

    8. Chang, Q. and G. Wang, "Multigrid and adaptive algorithm for solving the nonlinear Schrodinger equation," Journal of Computational Physics, Vol. 85, No. 2, 504, 1989.
    doi:10.1016/0021-9991(89)90172-1

    9. Dai, W. Z. and R. Nassar, "A finite difference scheme for the generalized nonlinear Schrodinger equation with variable coefficients," Journal of Computational Mathematics, Vol. 18, No. 2, 123-132, 2000.

    10. Delfour, M., M. Fortin, and G. Payr, "Finite-difference solutions of a non-linear Schrodinger equation," Journal of Computational Physics, Vol. 44, No. 2, 277-288, 1981.
    doi:10.1016/0021-9991(81)90052-8

    11. Herbst, B. M., J. Ll Morris, and A. R. Mitchell, "Numerical experience with the nonlinear Schrodinger equation," Journal of Computational Physics, Vol. 60, No. 2, 282-305, 1985.
    doi:10.1016/0021-9991(85)90008-7

    12. Taflove, A. and S. C. Hagness, Computational Electrodynamics (The Finite-difference Time-domain Method), 3rd Ed., Artech House, 2001.

    13. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, 2nd Ed., Chapters 1–11, Wiley-IEEE Press, 2000.
    doi:10.1109/9780470544518

    14. Sullivan, D. and D. S. Citrin, "Time-domain simulation of two electrons in a quantum dot," Journal of Applied Physics, Vol. 89, No. 7, 3841-3846, 2001.
    doi:10.1063/1.1352559

    15. Sullivan, D. M. and D. S. Citrin, "Determination of the eigenfunctions of arbitrary nanostructures using time domain simulation," Journal of Applied Physics, Vol. 91, No. 5, 3219-3226, 2002.
    doi:10.1063/1.1445277

    16. Soriano, A., E. A. Navarro, J. A. Porti, and V. Such, "Analysis of the finite difference time domain technique to solve the Schrodinger equation for quantum devices," Journal of Applied Physics, Vol. 95, No. 12, 8011-8011, 2004.
    doi:10.1063/1.1753661

    17. Sudiarta, I. W. and D. J. W. Geldart, "Solving the Schrodinger equation using the finite difference time domain method," Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 8, 1885-1896, 2007.
    doi:10.1088/1751-8113/40/8/013

    18. Moxley, F. I., D. T. Chuss, and W. Dai, "A generalized finite-difference time-domain scheme for solving nonlinear Schrodinger equations," Computer Physics Communications, Vol. 184, No. 8, 1834-1841, 2013.
    doi:10.1016/j.cpc.2013.03.006

    19. Tay, W. C. and E. L. Tan, "Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrodinger equation," Computer Physics Communications, Vol. 185, No. 7, 1886-1892, 2014.
    doi:10.1016/j.cpc.2014.03.014

    20. Wilson, J. P. and W. Dai, "Generalized finite-difference time-domain method with absorbing boundary conditions for solving the nonlinear Schrodinger equation on a GPU," Computer Physics Communications, Vol. 235, 279-292, 2019.
    doi:10.1016/j.cpc.2018.02.013

    21. Dai, W., G. Li, R. Nassar, and S. Su, "On the stability of the FDTD method for solving a time-dependent Schrodinger equation," Numerical Methods for Partial Differential Equations, Vol. 21, No. 6, 1140-1154, 2010.
    doi:10.1002/num.20082

    22. Adamowski, J., "A numerical solution of the Poisson-Schr¨odinger problem for a vertical gated quantum dot," TASK Quarterly, Vol. 8, 603, 2004.

    23. Fiori, G. and G. Iannaccone, "The effect of quantum confinement and discrete dopants in nanoscale 50 nm n-MOSFETs: A three-dimensional simulation," IEEE Transactions on Nanotechnology, Vol. 13, No. 3, 294, 2002.
    doi:10.1088/0957-4484/13/3/311

    24. Guo, J., et al., "Assessment of high-frequency performance potential of carbon nanotube transistors," IEEE Transactions on Nanotechnology, Vol. 4, No. 6, 715-721, 2005.
    doi:10.1109/TNANO.2005.858601

    25. Stefanucci, G., S. Kurth, A. Rubio, and E. K. U. Gross, "Time-dependent approach to electron pumping in open quantum systems," Physical Review B, Vol. 77, 75339, 2008.
    doi:10.1103/PhysRevB.77.075339

    26. Chen, Z.-D., J.-Y. Zhang, and Z.-P. Yu, "Time-dependent transport in nanoscale devices," Chinese Physics Letters, Vol. 26, No. 3, 37303-37306(4), 2009.
    doi:10.1088/0256-307X/31/3/037303

    27. Yang, J. and W. Sui, "Solving Maxwell-Schrodinger equations for analyses of nano-scale devices," European Microwave Conference, 2007.

    28. Ahmed, I., E. H. Khoo, E. Li, and R. Mittra, "A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 914-917, 2010.
    doi:10.1109/LAWP.2010.2076411

    29. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electronics Letters, Vol. 41, No. 19, 1046-1047, 2006.
    doi:10.1049/el:20052381

    30. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally stable LOD-FDTD method," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 832-837, 2010.
    doi:10.1109/TAP.2009.2039334

    31. Pierantoni, L., D. Mencarelli, and T. Rozzi, "A new 3-D transmission line matrix scheme for the combined Schrodinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 3, 654-662, 2008.
    doi:10.1109/TMTT.2008.916883

    32. Xiang, C., F. Kong, K. Li, and M. Liu, "A high-order symplectic FDTD scheme for the Maxwell-Schrodinger system," IEEE Journal of Quantum Electronics, Vol. 54, No. 1, 1-8, 2018.
    doi:10.1109/JQE.2017.2782839

    33. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
    doi:10.2528/PIER11042002

    34. Chen, Y. P., Y. M.Wu, and W. E. I. Sha, "Modeling Rabi oscillation by rigorously solving Maxwell-Schrodinger equation," IEEE International Symposium on Microwave, 2016.

    35. Hatori, N., M. Sugawara, T. Akiyama, and Y. Nakata, "Low frequency chirp self-assembled InGaAs/GaAs quantum dot lasers," Lasers & Electro-optics Society, Leos the Meeting of the IEEE, 2001.

    36. Yang, Z. D., L. Zhang, H. Zeng, D. Z. Ding, and R. S. Chen, "Multi-quantum state control of nano-tube by the Maxwell-Schrodinger hybrid method," 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2018.

    37. Takeuchi, T., S. Ohnuki, and T. Sako, "Maxwell-Schrodinger hybrid simulation for optically controlling quantum states: A scheme for designing control pulses," Physical Review A, Vol. 91, No. 3, 033401, 2015.
    doi:10.1103/PhysRevA.91.033401

    38. Meshulach, D. and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature, Vol. 396, No. 6708, 239-242, 1998.
    doi:10.1038/24329

    39. Chen, Z., J. Zhang, and Z. Yu, "Solution of the time-dependent Schrodinger equation with absorbing boundary conditions," Journal of Semiconductors, Vol. 30, No. 1, 1-6, 2009.

    40. Subasi, M., "On the finite-differences schemes for the numerical solution of two dimensional Schrodinger equation," Numerical Methods for Partial Differential Equations, Vol. 18, No. 6, 752-758, 2002.
    doi:10.1002/num.10029

    41. Burden, R. L. and J. D. Faires, Numerical Analysis, 5th Ed., PWS Publishing Co., 1988.

    42. Visscher, P. B., "A fast explicit algorithm for the time-dependent Schrodinger equation," Computers in Physics, Vol. 5, No. 6, 596-598, 1991.
    doi:10.1063/1.168415

    43. Tal-Ezer, H. and R. Kosloff, "An accurate and efficient scheme for propagating the time dependent Schrodinger equation," Journal of Chemical Physics, Vol. 81, No. 9, 3967-3971, 1984.
    doi:10.1063/1.448136

    44. Leforestier, C., et al., "A comparison of different propagation schemes for the time dependent Schrodinger equation," Journal of Computational Physics, Vol. 94, No. 1, 59-80, 1991.
    doi:10.1016/0021-9991(91)90137-A

    45. Leforestier, C., R. H. Bisseling, C. Cerjan, M. D. Feit, and R. Kosloff, "A comparison of different propagation schemes for the time dependent Schrodinger equation," Journal of Computational Physics, Vol. 89, No. 1, 490-491, 1991.

    46. De Raedt, H., K. Michielsen, J. S. Kole, and M. T. Figge, "One-step finite-difference time-domain algorithm to solve the Maxwell equations," Physical Review E Statal Nonlinear & Soft Matter Physics, Vol. 67, No. 5, Pt. 2, 056706, 2003.

    47. Bar-On, I. and M. Leoncini, "Stable solution of tridiagonal systems," Numerical Algorithms, Vol. 18, No. 3, 361-388, 1998.
    doi:10.1023/A:1019137919461

    48. Zhang, Y., J. Cohen, A. A. Davidson, and J. D. Owens, "A hybrid method for solving tridiagonal systems on the GPU," GPU Computing Gems Jade Edition, 117-132, 2012.
    doi:10.1016/B978-0-12-385963-1.00011-3

    49. Chen, Y. C. and C. R. Lee, Augmented Block Cimmino Distributed Algorithm for Solving Tridiagonal Systems on GPU, Chapter 9, Advances in GPU Research and Practice, 2017.

    50. Chen, Y., Finite element method modeling of advanced electronic devices, Electronic Theses and Dissertations, 2006.

    51. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. El-Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time-domain model," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 6, 799-808, 1996.
    doi:10.1109/22.506437

    52. Grondin, R. O., S. M. El-Ghazaly, and S. M. Goodnick, "A review of global modeling of charge transport in semiconductors and full-wave electromagnetics," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2167-2167, 2002.
    doi:10.1109/TMTT.1999.798017

    53. Naeemi, A., R. Sarvari, and J. D. Meindl, "Performance comparison between carbon nanotube and copper interconnects for GSI," IEEE International Electron Devices Meeting, 2005.

    54. Kim, G., E. Arvas, V. Demir, and A. Z. Elsherbeni, "A novel nonuniform subgridding scheme for FDTD using an optimal interpolation technique," Progress In Electromagnetics Research B, Vol. 44, 137-161, 2012.
    doi:10.2528/PIERB12071013

    55. Mailloux, R., "Theory of electromagnetic waves," IEEE Antennas & Propagation Society Newsletter, Vol. 26, No. 2, 13-14, 1984.
    doi:10.1109/MAP.1984.27739

    56. Ahmed, I. and E. Li, "A hybrid FDTD and ADI-FDTD technique for coupled Maxwell’s and Schrodinger’s equations," IEEE Antennas & Propagation Society International Symposium, 2010.

    57. Ren, X., et al., "High-order unified symplectic FDTD scheme for the metamaterials," Computer Physics Communications, Vol. 183, No. 6, 1192-1200, 2012.
    doi:10.1016/j.cpc.2012.01.021

    58. Ryu, C. J., A. Liu, W. E. I. Sha, and W. C. Chew, "Finite-difference time-domain simulation of the Maxwell-Schrodinger system," IEEE Journal on Multiscale & Multiphysics Computational Techniques, Vol. 1, 40-47, 2016.
    doi:10.1109/JMMCT.2016.2605378

    59. Turati, P., "FDTD modelling of nanostructures at microwave frequency," Surface & Coatings Technology, Vol. 254, No. 10, 402-409, 2014.

    60. Pierantoni, L., D. Mencarelli, and T. Rozzi, "The combined Schrodinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices," Time Domain Methods in Electrodynamics, 105-133, 2008.
    doi:10.1007/978-3-540-68768-9_9

    61. Xie, G., Z. Huang, M. Fang, and W. Sha, "Simulating Maxwell-Schrodinger equations by high-order symplectic FDTD algorithm," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 143-151, 2019.
    doi:10.1109/JMMCT.2019.2920101

    62. Zheng, F. and Z. Chen, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
    doi:10.1109/75.808026

    63. Ravi, K., Y. Huang, and S. Ho, "A computationally efficient, non-equilibrium, carrier temperature dependent semiconductor gain model for FDTD simulation of optoelectronic devices," 2011 Numerical Simulation of Optoelectronic Devices, 113-114, Sep. 5–8, 2011.

    64. Bhardwaj, S., "Electronic-electromagnetic multiphysics modeling for terahertz plasmonics: A review," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 307-316, 2019.
    doi:10.1109/JMMCT.2019.2957361

    65. Wang, G., et al., "The numerical modeling of 3D microfiber couplers and resonators," IEEE Photonics Technology Letters, Vol. 28, No. 15, 1707-1710, 2016.
    doi:10.1109/LPT.2016.2551323

    66. Tan, E. L. and D. Y. Heh, "Multiple 1-D fundamental ADI-FDTD method for coupled transmission lines on mobile devices," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 198-206, 2019.
    doi:10.1109/JMMCT.2019.2945187

    67. Zhai, M., H. Peng, J. Mao, and W. Yin, "Modeling tunable graphene-based filters using leapfrog ADI-FDTD method," 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Jul. 1–3, 2015.

    68. Bahl, M., et al., "Mixed-level simulation of opto-electronic devices," 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 101-102, Jul. 11–15, 2016.

    69. Bandrauk, E. L. C., "A numerical Maxwell-Schrodinger model for intense laser-matter interaction and propagation," Computer Physics Communications, 2007.

    70. Navarro, D., "A carrier-transit-delay-based nonquasi-static MOSFET model for circuit simulation and its application to harmonic distortion analysis," IEEE Transactions on Electron Devices, Vol. 53, No. 9, 2025-2034, 2006.
    doi:10.1109/TED.2006.880827

    71. Chen, Y. P., W. E. I. Sha, L. Jiang, M. Meng, Y. M. Wu, and W. C. Chew, "A unified Hamiltonian solution to Maxwell-Schrodinger equations for modeling electromagnetic field-particle interaction," Computer Physics Communications, Vol. 215, 63-70, 2017.
    doi:10.1016/j.cpc.2017.02.006

    72. Takeuchi, T., S. Ohnuki, and T. Sako, "A simple formula to predict the influence of the near-field in the optical control of confined electron systems," Journal of Physics B Atomic Molecular & Optical Physics, Vol. 50, No. 4, 045002, 2017.
    doi:10.1088/1361-6455/aa55f4

    73. Gerry, C., Introductory Quantum Optics, 1st Ed., Cambridge University Press, London, 2004.
    doi:10.1017/CBO9780511791239

    74. Rabitz, H., "Whither the future of controlling quantum phenomena?," Science, Vol. 288, No. 5467, 824-828, 2000.
    doi:10.1126/science.288.5467.824

    75. Townsend, D., et al., "A Stark future for quantum control," The Journal of Physical Chemistry A, Vol. 4, No. 115, 357-373, 2011.
    doi:10.1021/jp109095d

    76. Rangan, C. and P. H. Bucksbaum, "Optimally shaped terahertz pulses for phase retrieval in a Rydberg-atom data register," Physical Review A, Vol. 64, No. 3, 033417, 2001.
    doi:10.1103/PhysRevA.64.033417

    77. Palao, J. P. and R. Kosloff, "Quantum computing by an optimal control algorithm for unitary transformations," Physical Review Letters, Vol. 89, No. 18, 188301, 2002.
    doi:10.1103/PhysRevLett.89.188301

    78. Nunn, J., et al., "Mapping broadband single-photon wave packets into an atomic memory," Physical Review A, Vol. 75, No. 1, 011401, 2007.
    doi:10.1103/PhysRevA.75.011401

    79. Lewis, A. and K. Lieberman, "Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions," Nature, Vol. 354, No. 6350, 214-216, 1991.
    doi:10.1038/354214a0

    80. Zenhausern, F., "Apertureless near-field optical microscope," Applied Physics Letters, Vol. 65, No. 13, 1623-1625, 1994.
    doi:10.1063/1.112931

    81. Choi, S., et al., "Active tailoring of nanoantenna plasmonic fields using few-cycle laser pulses," Physical Review A, Vol. 93, No. 2, 021405, 2016.
    doi:10.1103/PhysRevA.93.021405