Vol. 174

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-05-23

Comparison of Correlation Performance for Various Measurement Schemes in Quantum Bipartite Radar and Communication Systems

By Rory A. Bowell, Matthew J. Brandsema, Ram M. Narayanan, Stephen W. Howell, and Jonathan M. Dilger
Progress In Electromagnetics Research, Vol. 174, 43-53, 2022
doi:10.2528/PIER22022506

Abstract

Bipartite systems have become popular in emerging quantum radar and quantum communication systems. This paper analyzes the various correlation coefficients for different types of quantum radar measurement schemes, such as: (i) immediate detection of the idler photon events to be used in post-processing correlation with the signal photon events, (ii) immediate detection of the idler electric field to be used in post-processing correlation with the signal electric field, (iii) immediate detection of the idler quadratures to be used in post-processing correlation with the signal quadratures, and (iv) conventional analog correlation method of the optical parametric amplifier. The showcased results compare the performance of these different methodologies for various environmental scenarios. This work is important at developing the fundamentals behind quantum technologies that require covariance measurements and will permit more accurate selection of the appropriate measurement styles for individual systems.

Citation


Rory A. Bowell, Matthew J. Brandsema, Ram M. Narayanan, Stephen W. Howell, and Jonathan M. Dilger, "Comparison of Correlation Performance for Various Measurement Schemes in Quantum Bipartite Radar and Communication Systems," Progress In Electromagnetics Research, Vol. 174, 43-53, 2022.
doi:10.2528/PIER22022506
http://www.jpier.org/PIER/pier.php?paper=22022506

References


    1. Luong, D., C. S. Chang, A. Vadiraj, A. Damini, C. Wilson, and B. Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2041-2060, Jun. 2020.
    doi:10.1109/TAES.2019.2951213

    2. Bowell, R. A., M. J. Brandsema, B. M. Ahmed, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Electric field correlations in quantum radar and the quantum advantage," Proc. SPIE Conference on Radar Sensor Technology XXIV, Vol. 11408, Apr. 2020, doi: 10.1117/12.2562749.

    3. Brandsema, M. J., R. M. Narayanan, and M. Lanzagorta, "Correlation properties of single photon binary waveforms used in quantum radar/lidar," Proc. SPIE Conference on Radar Sensor Technology XXIV, Vol. 11408, Apr. 2020, doi: 10.1117/12.2560184.

    4. Chang, C. W. S., A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, "Quantum-enhanced noise radar," Applied Physics Letters, Vol. 114, No. 11, 112601, Mar. 2019.
    doi:10.1063/1.5085002

    5. Lanzagorta, M., Quantum Radar, Morgan & Claypool, San Rafael, CA, USA, 2011.

    6. Lopaeva, E. D., I. Ruo Berchera, I. P. Degiovanni, S. Olivares, G. Brida, and M. Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, Apr. 2013.
    doi:10.1103/PhysRevLett.110.153603

    7. Barzanjeh, S., S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, "Microwave quantum illumination," Physical Review Letters, Vol. 114, No. 8, 080503, Feb. 2015.
    doi:10.1103/PhysRevLett.114.080503

    8. Shapiro, J. H., "The quantum illumination story," IEEE Aerospace and Electronic Systems Magazine, Vol. 35, No. 4, 8-20, Apr. 2020.
    doi:10.1109/MAES.2019.2957870

    9. Bowell, R. A., M. J. Brandsema, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Tripartite correlation performance for use in quantum radar systems," Proc. SPIE Conference on Radar Sensor Technology XV, Vol. 11742, Apr. 2021, doi: 10.1117/12.2588308.

    10. Lanzagorta, M., "Low-brightness quantum radar," Proc. SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, Vol. 9461, Baltimore, MD, Apr. 2015, doi: 10.1117/12.2177577.

    11. Guha, S., "Receiver design to harness the quantum illumination advantage," Proc. 2009 IEEE International Symposium on Information Theory (ISIT), 963-967, Seoul, Korea, Jun.-Jul. 2009.

    12. Zhuang, Q. and J. H. Shapiro, "Ultimate accuracy limit of quantum pulse-compression ranging,", arXiv:2109.11079v1, Sep. 2021.

    13. Blakely, J. N., "Bounds on probability of detection error in quantum-enhanced noise radar," Quantum Reports, Vol. 2, No. 3, 400-413, Jul. 2020.
    doi:10.3390/quantum2030028

    14. Tan, S.-H., B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, "Quantum illumination with Gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, Dec. 2008.
    doi:10.1103/PhysRevLett.101.253601

    15. Dawood, M. and R. M. Narayanan, "Receiver operating characteristics for the coherent UWB random noise radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 2, 586-594, Apr. 2001.
    doi:10.1109/7.937470

    16. Luong, D., B. Balaji, and S. Rajan, "Biomedical sensing using quantum radars based on Josephson parametric amplifiers," Proc. 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Aug. 2021, doi: 10.1109/ACES53325.2021.00091.

    17. Russer, J. A., M. Wurth, W. Utschick, F. Bischeltsrieder, and M. Peichl, "Performance considerations for quantum radar," Proc. 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Aug. 2021, doi: 10.1109/ACES53325.2021.00105.

    18. Luong, D., S. Rajan, and B. Balaji, "Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection," IEEE Sensors Journal, Vol. 20, No. 10, 5221-5228, May 2020.
    doi:10.1109/JSEN.2020.2971851

    19. Liu, H., B. Balaji, and A. S. Helmy, "Target detection aided by quantum temporal correlations: Theoretical analysis and experimental validation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 5, 3529-3544, Oct. 2020.
    doi:10.1109/TAES.2020.2974054

    20. Yang, H., W. Roga, J. D. Pritchard, and J. Jeffers, "Gaussian state-based quantum illumination with simple photodetection," Optics Express, Vol. 29, No. 6, 8199-8215, Mar. 2021.
    doi:10.1364/OE.416151

    21. England, D. G., B. Balaji, and B. J. Sussman, "Quantum-enhanced standoff detection using correlated photon pairs," Physical Review A, Vol. 99, 023828, Feb. 2019.
    doi:10.1103/PhysRevA.99.023828

    22. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, UK, 1997.
    doi:10.1017/CBO9780511813993

    23. Vourdas, A., "Optical signals with thermal noise," Physical Review A, Vol. 39, No. 1, 206-213, Jan. 1989.
    doi:10.1103/PhysRevA.39.206

    24. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, New York, NY, USA, 1976.

    25. Griffiths, D. J. and D. F. Schroeter, Introduction to Quantum Mechanics, 3rd Ed., Cambridge University Press, Cambridge, UK, 2018.
    doi:10.1017/9781316995433

    26. Guha, S. and B. I. Erkmen, "Gaussian-state quantum illumination receivers for target detection," Physical Review A, Vol. 80, No. 5, 052310, Nov. 2009.
    doi:10.1103/PhysRevA.80.052310

    27. Ahmed, B. M., M. J. Brandsema, R. A. Bowell, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Remote sensing performance enhancement due to quantum+classical cooperative sensor," Proc. SPIE Conference on Radar Sensor Technology XXIV, Vol. 11408, Apr. 2020, doi: 10.1117/12.2562739.

    28. Zhang, Z., S. Mouradian, F. N. Wong, and J. H. Shapiro, "Entanglement-enhanced sensing in a lossy and noisy environment," Physical Review Letters, Vol. 114, No. 11, 110506, Mar. 2015.
    doi:10.1103/PhysRevLett.114.110506