PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 18 > pp. 209-228

Non-Linear Interference Cancellation Techniques for Electromagnetically Dense Propagation Environments

By S. Ponnekanti and S. Sali

Full Article PDF (407 KB)

Citation: (See works that cites this article)
S. Ponnekanti and S. Sali, "Non-Linear Interference Cancellation Techniques for Electromagnetically Dense Propagation Environments," Progress In Electromagnetics Research, Vol. 18, 209-228, 1998.
doi:10.2528/PIER97032600
http://www.jpier.org/PIER/pier.php?paper=970326

References:
1. Ponnekanti, S. and S. Sali, "Efficient antenna beaming," Electronics Letters, Vol. 12, March 1996.

2. Widrow, B., "Neural nets for adaptive filtering and adaptive pattern recognition," Computer, 25-39, March 1988.
doi:10.1109/2.29

3. Watts, S., "Radar detection prediction in K-distributed sea clutter and thermal noise," IEEE Trans. AES, Vol. 23, No. 1, 40-45, 1987.

4. Haykin, S. S. and W. Stehwien, "Classification of radar clutter in air traffic control environment," IEEE Proc., Vol. 779, No. 6, June 1991.

5. Farina, A., A. Russo, and F. Scannapieco, "Radar detection in coherent weibull clutter," IEEE Trans. ASSP, Vol. 35, No. 6, 893-895, June 1987.
doi:10.1109/TASSP.1987.1165221

6. Gibson, C. and S. Haykin, "Radar performance studies of adaptIve lattice clutter suppression filters," IEEE Proc., Part-F, Vol. 130, No. 5, 357-367, August 1983.

7. Ponnekanti, S. and S. Sali, "Adaptive antenna techniques for mobile communications," IEEE Proc. Int. Conf. on Wireless Comms. (IPWC 96), Vol. 243, 19-21, Feb. 1996.

8. Cramer, H., Mathematical Methods of Statistics, Englwood Cliffs, NJ, 1946.

9. Nutall, A. H. and G. C. Carter, "A generalised framwork for power spectral estimation," IEEE Trans. on Acoustics Speech and Signal, Vol. 128, 334-335, 1980.
doi:10.1109/TASSP.1980.1163412

10. Simmers, J. A. and T. O’Donnekk, "Adaptive radial basis function neural beamforming," IEEE Proc., (c31), ITA Conference, l09-118, June 1992.

11. Leonard, J. A., M. A. Kramer, and L. H. Ungar, "Using radial basis functions to approximate a function and its error bounds," IEEE Trans. on Neural Networks, Vol. 3, No. 4, 624-627, 1992.
doi:10.1109/72.143377

12. Fahlaman, S. E. and C. Liebiere, "The cascaded-correlation learning architecture," Advances in Neural Information Processing Systems, Vol. 2, 524-532, D. S. Touretsky, ed., 1990.

13. Nielseo, H., Neuro Computing, Addison-Wesley, 1989.

14. Rumelhart, D. E. and J. L. McClelland, Parallel Distrubuted Processing (PDP): Explorations in the Microstructure of Cognition, Vol. 1, Foundations, MIT Press, Cambridge, MA, 1986.

15. Kohonell, T., Self-organization and Associate Memory, Springer-Verlag, Berlin, 1984.

16. Park, J. and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Computation, Vol. 3, 246-257, 1989.

17. Specht, D. F., "Probabilistic neural networks," Neural Networks, Vol. 3, No. 1, 109-118, 1990.
doi:10.1016/0893-6080(90)90049-Q

18. Parzen, E., "On estimation of a PDF and mode," Ann Math. and Stat., Vol. 33, 1962.

19. Lipmann, R. P., "An introduction to computing with neural net," IEEE ASSP Magazine, Vol. 4, 4-22, 1987.
doi:10.1109/MASSP.1987.1165576

20. McClelland, J. L. and D. E. Rulllelllart, Explorations in Parallel Distributed Processing, MlT Press, Cambridge, MA, 1988.


© Copyright 2014 EMW Publishing. All Rights Reserved