PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 18 > pp. 173-208

Electromagnetic Scattering from Coated Strips Utilizing the Adaptive Multiscale Moment Method

By C. Su and T. K. Sarkar

Full Article PDF (1,421 KB)

Citation: (See works that cites this article)
C. Su and T. K. Sarkar, "Electromagnetic Scattering from Coated Strips Utilizing the Adaptive Multiscale Moment Method," Progress In Electromagnetics Research, Vol. 18, 173-208, 1998.
doi:10.2528/PIER97051400
http://www.jpier.org/PIER/pier.php?paper=970514

References:
1. Harrington, R. F., Field Computation by Moment Method, Macmillan Press, New York, 1968.

2. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from electrically large coated flat and curved strips: Entire domain Galerkin formulation," IEEE Trans. Antennas Propagat., Vol. 35, 790-801, July 1987.
doi:10.1109/TAP.1987.1144170

3. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid solutions for scattering from large bodies of revolution with material discontinuities and coatings," IEEE Trans. Antennas Propagat., Vol. 32, 717-723, June 1984.
doi:10.1109/TAP.1984.1143398

4. Kishk, A. A., A. W. Glisson, and P. M. Goggans, "Scattering from conductors coated with materials of arbitrary thickness," IEEE Trans. Antennas Propagat., Vol. 40, 108-112, Jan. 1992.
doi:10.1109/8.123366

5. Petre, P., M. Swaminathan, G. Veszely, and T. K. Sarkar, "Integral equation solution for analyzing scattering from one-dimensional periodic coated strips," IEEE Trans. Antennas Propagat., Vol. 41, 1069-1080, Aug. 1993.
doi:10.1109/8.244648

6. Petre, P., M. Swaminathan, L. Zombory, T. K. Sarkar, and K. A. Jose, "Volume/surface formulation for analyzing scattering from coated periodic strip," IEEE Trans. Antennas Propagat., Vol. 42, 119-122, Jan. 1994.
doi:10.1109/8.272312

7. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Trans. Antennas Propagat., Vol. 39, 627-631, May 1991.
doi:10.1109/8.81490

8. Richmond, J. H., "Digital computer solutions of the rigorous equations for scattering problems," Proc. IEEE, Vol. 53, 796-804, Aug. 1965.
doi:10.1109/PROC.1965.4057

9. Mittra, R., (ed.), Computer Techniques for Electromagnetics, Pergamon Press, Oxford, 1973.

10. Balanis, C. A., Antenna Theory: Analysis and Design, 283-321, Harper & Row, New York, 1982.

11. Bulter, C. M. and D. R. Wilton, "Analysis of various numerical techniques applied to thin-wire scatterers," IEEE Trans. AP, Vol. 23, No. 4, 524-540, July 1975.

12. Meyer, Y., Wavelets: Algorithms & Applications, translated and revised by R. D. Ryan, SIAM Press, Philadelphia, 1993.

13. Daubechies, I., Ten Lectures on Wavelet, SIAM Press, Philadelphia, 1992.
doi:10.1137/1.9781611970104

14. Chui, C. K., An Introduction to Wavelets, Academic, New York, 1991.

15. Chui, C. K., Ed., Wavelets --- A Tutorial in Theory and Applications, Academic, New York, 1992.

16. Daubechies, I., "Orthonormal bases of compactly supported wavelets," Commun. Pure Appl. Math., Vol. 41, 909-996, Nov. 1988.

17. Beylkin, G., R. R. Coifman, and V. Rokhlin, "Fast wavelet transform and numerical algorithm I," Comm. Pure Appl. Math., Vol. 44, 141-183, 1991.
doi:10.1002/cpa.3160440202

18. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansions in method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, May 1993.
doi:10.1109/8.222280

19. Steinberg, B. Z. and Y. Leviatan, "Periodic wavelet expansions for analysis of scattering from metallic cylinders," IEEE Antennas Propagat. Soc. Symp., 20-23, June 1994.

20. Wagner, R. L., P. Otto, and W. C. Chew, "Fast waveguide mode compuation using wavelet-like basis functions," IEEE Microwave Guided Wave Lett., Vol. 3, 208-210, July 1993.

21. Franza, O. P., R. L. Wagner, and W. C. Chew, "Wavelet-like basis functions for solving scattering integral equation," IEEE Antennas Propagat. Soc. Symp., 3-6, June 1994.

22. Kim, H. and H. Ling, "On the application of fast wavelet transform to the integral equation of electromagnetic scattering problems," Microwave Opt. Technol. Lett., Vol. 6, No. 3, 168-173, Mar. 1993.
doi:10.1002/mop.4650060305

23. Goswami, J. C., A. K. Chan, and C. K. Chui, "On solving firstkind integral equations using wavelets on a bounded interval," IEEE Trans. Antenna Propagat., Vol. 43, No. 6, 614-622, June l995.
doi:10.1109/8.387178

24. Wang, G., "A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects," IEEE Trans. Antenna Propagat., Vol. 43, No. 2, 170-178, Feb. 1995.
doi:10.1109/8.366379

25. Sarkar, T. K., R. S. Adve, L. Castillo, and M. Palma, "Utilization of wavelet concepts in finite elements for an efficient solution of Maxwell’s equations," Radio Science, Vol. 29, 965-977, July 1994.

26. Garcia-Castillo, L., M. Salezar-Palma, T. K. Sarkar, and R. S. Adve, "Efficient solution of the differential form of Maxwell’s equations in rectangular regions," IEEE Trans. on MTT, Vol. 43, No. 3, 647-654, March 1995.
doi:10.1109/22.372112

27. Brandt, A., "Multi-level adaptive solutions to boundary value problems," Mathematics of Computation, Vol. 31, 330-390, 1977.

28. Hackbusch, W., Multigrid Methods and Applications, Springer-Verlag, New York, 1985.

29. McCormick, S. F., "Multigrid Methods: Theory, Applications and Suppercomputing," Marcel Dekker, 1988.

30. Mandel, J., "On multilevel iterative methods for integral equations of the second kind and related problems," Numer. Math., Vol. 46, 147-157, 1985.
doi:10.1007/BF01400261

31. Hemker, P. W. and H. Schippers, "Multiple grid methods for the solution of Fredholm integral equations of the second kind," Mathematics of Computation, Vol. 36, No. 153, 1981.
doi:10.1090/S0025-5718-1981-0595054-2

32. Kalbasi, K. and K. R. Demarest, "A multilevel enchancement of the method of moments," 7th Ann. Rev. Progress Appl. Computat. Electromagn., 254-263, Naval, Monterey, CA, Mar. 1991.

33. Kalbasi, K. and K. R. Demarest, "A multilevel formulation of the method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 589-599, May 1993.
doi:10.1109/8.222278


© Copyright 2014 EMW Publishing. All Rights Reserved