PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 19 > pp. 173-197

Scattering from Perfectly Conducting Strips by Utilizing an Adaptive Multiscale Moment Method

By C. Su and T. K. Sarkar

Full Article PDF (1,302 KB)

Citation: (See works that cites this article)
C. Su and T. K. Sarkar, "Scattering from Perfectly Conducting Strips by Utilizing an Adaptive Multiscale Moment Method," Progress In Electromagnetics Research, Vol. 19, 173-197, 1998.
doi:10.2528/PIER97102100
http://www.jpier.org/PIER/pier.php?paper=971021

References:
1. Thiele, G. A. and T. H. Newhouse, "A hybrid technique for combining moment methods with a geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, 62-69, Jan. 1975.
doi:10.1109/TAP.1975.1141004

2. Burnside, W. D., C. L. Lu, and R. J. Marhefka, "A technique to combine the geometric theory of diffraction and the moment method," IEEE Trans. Antennas Propagat., Vol. 23, 551-558, May 1975.
doi:10.1109/TAP.1975.1141117

3. Ekelman, E. P. and G. A. Thiele, "A hybrid technique for combining the moment method treatment of wire antennas with the GTD for curved surfaces," IEEE Trans. Antennas Propagat., Vol. 28, 831-839, June 1980.
doi:10.1109/TAP.1980.1142423

4. Sahalos, J. N. and G. A. Thiele, "On the application of the GTD-MM technique and its limitation," IEEE Trans. Antennas Propagat., Vol. 29, 780-786, June 1981.
doi:10.1109/TAP.1981.1142667

5. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid solutions for scattering from perfectly conducting bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 31, 570-583, May 1983.
doi:10.1109/TAP.1983.1143114

6. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid solutions for scattering from large bodies of revolutlon with material discontinuities and coatings," IEEE Trans. Antennas Propagat., Vol. 32, 717-723, June 1984.
doi:10.1109/TAP.1984.1143398

7. Wang, D. S., "Current-basesd hybrid analysis for surface-wave effects on large scatterers," IEEE Trans. Antennas Propagat., Vol. 39, 839-850, June 1991.
doi:10.1109/8.86885

8. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, 162-169, Feb. 1995.
doi:10.1109/8.366378

9. Jakobus, U. and F. M. Landstorfer, "Improvement of the POMoM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propagat., Vol. 43, 1123-1129, Oct. 1995.
doi:10.1109/8.467649

10. Jin, J., S. S. Ni, and S. W. Lee, "Hybridization of SBRand FEM for scattering by large bodies with cracks and cavities," IEEE Trans. Antennas Propagat., Vol. 43, 1130-1139, Oct. 1995.

11. Ling, H., R. C. Chou, and S. W. Lee, "Ray Versus modes: Pictorial display of energy flow in an open-ended waveguided," IEEE Trans. Antennas Propagat., Vol. 35, No. 3, 605-607, May 1987.
doi:10.1109/TAP.1987.1144148

12. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and Bouncing Ray: calculatin the RCS of an arbitrary shaped cavity," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 194-205, Feb. 1989.
doi:10.1109/8.18706

13. Baldauf, J., S. W. Lee, L. Lin, S. K. Jeng, S. M. Scarborouh, and C. L. Yu, "High frequency scattering from trihedral corner reflectors and other benchmark targets: SBRv ersus experiments," IEEE Trans. Antennas Propagat., Vol. 39, No. 9, 1345-1351, Sept. 1991.
doi:10.1109/8.99043

14. Jin, J. M. and J. L. Volakis, "A finite element boundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 97-104, 1991.
doi:10.1109/8.64442

15. Jin, J. M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. 39, No. 11 , 1598-1604, Nov. 1991.
doi:10.1109/8.102775

16. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, New York, 1993.

17. Lee, R. and T. T. Chia, "Analysis of electromagnetic scattering from a cavity with a complex termination by means of a hybrid Ray-FDTD method," IEEE Trans. Antennas Propagat., Vol. 41, No. 11, 1560-1564, Nov. 1993.
doi:10.1109/8.267356

18. Burkholder, R. J., High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities, Ph.D. dissertation, The Ohio State University, Columbus, OH, 1989.

19. Kalbasi, K. and K. R. Demarest, "A multilevel enchancement of the method of moments," 7th Ann. Rev. Progress Appl. Computat. Electromagn., Naval, 254-263, Monterey, CA, Mar. 1991.

20. Lin, J. H. and W. C. Chew, "An application of nested equivalence principle algorithm (NEPAL) in matrix vector multiplication of iterative algorithm," IEEE Antennas Propagat. Soc. Int. Symp. URSI Radio Sci. Meet., 317, Ann Arbor, MI, June 28--July 2, 1993.

21. Chew, W. C. and C. C. Lu, "The use of Huygen's equivalence principle for solving the volume integral equation of scattering," IEEE Trans. Antennas Propagat., Vol. 41, No. 6, 897-904, July 1993.

22. Michielssen, E. and A. Boag, "Reduced representations of matrices generated by the method of moments," IEEE Int. Conf. AP-S, 420-423, Seattle, WA, 1994.

23. Michielssen, E. and A. Boag, "Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems," Microwave Opt. Technol. Lett., Vol. 7, 790-795, Dec. 1994.
doi:10.1002/mop.4650071707

24. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas Propagat., Vol. 44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816

25. Beylkin, G., R. Coifman, and V. Rokhlin, "Fast wavelet transform and numerical algorthms I," Comm. Pure Appl. Math., Vol. 44, 141-183, 1991.
doi:10.1002/cpa.3160440202

26. Alpert, B. K., G. Beylkin, R. Coifman, and V. Rokhlin, "Wavelet-like bases for the fast solution of second-kind integral equations," SIAM J. Sci. Comp., Vol. 14, 159-184, Jan. 1993.
doi:10.1137/0914010

27. Steinbery, B. Z. and Y. Leviatan, "On the use of wavelet expansions in method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, May 1993.
doi:10.1109/8.222280

28. Steinbery, B. Z. and Y. Leviatan, "Periodic wavelet expansions for analysis of scattering from metallic cylinders," IEEE Antennas Propagat. Soc. Symp., 20-23, June 1994.

29. Wagner, R. L., P. Otto, and W. C. Chew, "Fast waveguide mode compuation using wavelet-like basis functions," IEEE Microwave Guided Wave Lett., Vol. 3, 208-210, July 1993.

30. Franza, O. P., R. L. Wagner, and W. C. Chew, "Wavelet-like basis functions for solving scattering integral equation," IEEE Antennas Propagat. Soc. Symp., 3-6, June 1994.

31. Kim, H. and H. Ling, "On the application of fast wavelet transform to the integral equation of electromagnetic scattering problems," Microwave Opt. Technol. Lett., Vol. 6, No. 3, 168-173, Mar. 1993.
doi:10.1002/mop.4650060305

32. Goswami, J. C., A. K. Chan, and C. K. Chui, "On solving firstkind integral equations using wavelets on a bounded interval," IEEE Trans. Antenna Propagat., Vol. 43, No. 6, 614-622, June 1995.
doi:10.1109/8.387178

33. Wang, G., "A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects," IEEE Trans. Antenna Propagat., Vol. 43, No. 2, 170-178, Feb. 1995.
doi:10.1109/8.366379


© Copyright 2014 EMW Publishing. All Rights Reserved