Vol. 19
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Scattering from Perfectly Conducting Strips by Utilizing an Adaptive Multiscale Moment Method
By
, Vol. 19, 173-197, 1998
Abstract
Citation
C. Su, and Tapan Kumar Sarkar, "Scattering from Perfectly Conducting Strips by Utilizing an Adaptive Multiscale Moment Method," , Vol. 19, 173-197, 1998.
doi:10.2528/PIER97102100
References

1. Thiele, G. A. and T. H. Newhouse, "A hybrid technique for combining moment methods with a geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, 62-69, Jan. 1975.
doi:10.1109/TAP.1975.1141004

2. Burnside, W. D., C. L. Lu, and R. J. Marhefka, "A technique to combine the geometric theory of diffraction and the moment method," IEEE Trans. Antennas Propagat., Vol. 23, 551-558, May 1975.
doi:10.1109/TAP.1975.1141117

3. Ekelman, E. P. and G. A. Thiele, "A hybrid technique for combining the moment method treatment of wire antennas with the GTD for curved surfaces," IEEE Trans. Antennas Propagat., Vol. 28, 831-839, June 1980.
doi:10.1109/TAP.1980.1142423

4. Sahalos, J. N. and G. A. Thiele, "On the application of the GTD-MM technique and its limitation," IEEE Trans. Antennas Propagat., Vol. 29, 780-786, June 1981.
doi:10.1109/TAP.1981.1142667

5. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid solutions for scattering from perfectly conducting bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 31, 570-583, May 1983.
doi:10.1109/TAP.1983.1143114

6. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid solutions for scattering from large bodies of revolutlon with material discontinuities and coatings," IEEE Trans. Antennas Propagat., Vol. 32, 717-723, June 1984.
doi:10.1109/TAP.1984.1143398

7. Wang, D. S., "Current-basesd hybrid analysis for surface-wave effects on large scatterers," IEEE Trans. Antennas Propagat., Vol. 39, 839-850, June 1991.
doi:10.1109/8.86885

8. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, 162-169, Feb. 1995.
doi:10.1109/8.366378

9. Jakobus, U. and F. M. Landstorfer, "Improvement of the POMoM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propagat., Vol. 43, 1123-1129, Oct. 1995.
doi:10.1109/8.467649

10. Jin, J., S. S. Ni, and S. W. Lee, "Hybridization of SBRand FEM for scattering by large bodies with cracks and cavities," IEEE Trans. Antennas Propagat., Vol. 43, 1130-1139, Oct. 1995.

11. Ling, H., R. C. Chou, and S. W. Lee, "Ray Versus modes: Pictorial display of energy flow in an open-ended waveguided," IEEE Trans. Antennas Propagat., Vol. 35, No. 3, 605-607, May 1987.
doi:10.1109/TAP.1987.1144148

12. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and Bouncing Ray: calculatin the RCS of an arbitrary shaped cavity," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 194-205, Feb. 1989.
doi:10.1109/8.18706

13. Baldauf, J., S. W. Lee, L. Lin, S. K. Jeng, S. M. Scarborouh, and C. L. Yu, "High frequency scattering from trihedral corner reflectors and other benchmark targets: SBRv ersus experiments," IEEE Trans. Antennas Propagat., Vol. 39, No. 9, 1345-1351, Sept. 1991.
doi:10.1109/8.99043

14. Jin, J. M. and J. L. Volakis, "A finite element boundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 97-104, 1991.
doi:10.1109/8.64442

15. Jin, J. M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. 39, No. 11 , 1598-1604, Nov. 1991.
doi:10.1109/8.102775

16. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, New York, 1993.

17. Lee, R. and T. T. Chia, "Analysis of electromagnetic scattering from a cavity with a complex termination by means of a hybrid Ray-FDTD method," IEEE Trans. Antennas Propagat., Vol. 41, No. 11, 1560-1564, Nov. 1993.
doi:10.1109/8.267356

18. Burkholder, R. J., High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities, Ph.D. dissertation, The Ohio State University, Columbus, OH, 1989.

19. Kalbasi, K. and K. R. Demarest, "A multilevel enchancement of the method of moments," 7th Ann. Rev. Progress Appl. Computat. Electromagn., Naval, 254-263, Monterey, CA, Mar. 1991.

20. Lin, J. H. and W. C. Chew, "An application of nested equivalence principle algorithm (NEPAL) in matrix vector multiplication of iterative algorithm," IEEE Antennas Propagat. Soc. Int. Symp. URSI Radio Sci. Meet., 317, Ann Arbor, MI, June 28--July 2, 1993.

21. Chew, W. C. and C. C. Lu, "The use of Huygen's equivalence principle for solving the volume integral equation of scattering," IEEE Trans. Antennas Propagat., Vol. 41, No. 6, 897-904, July 1993.

22. Michielssen, E. and A. Boag, "Reduced representations of matrices generated by the method of moments," IEEE Int. Conf. AP-S, 420-423, Seattle, WA, 1994.

23. Michielssen, E. and A. Boag, "Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems," Microwave Opt. Technol. Lett., Vol. 7, 790-795, Dec. 1994.
doi:10.1002/mop.4650071707

24. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas Propagat., Vol. 44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816

25. Beylkin, G., R. Coifman, and V. Rokhlin, "Fast wavelet transform and numerical algorthms I," Comm. Pure Appl. Math., Vol. 44, 141-183, 1991.
doi:10.1002/cpa.3160440202

26. Alpert, B. K., G. Beylkin, R. Coifman, and V. Rokhlin, "Wavelet-like bases for the fast solution of second-kind integral equations," SIAM J. Sci. Comp., Vol. 14, 159-184, Jan. 1993.
doi:10.1137/0914010

27. Steinbery, B. Z. and Y. Leviatan, "On the use of wavelet expansions in method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, May 1993.
doi:10.1109/8.222280

28. Steinbery, B. Z. and Y. Leviatan, "Periodic wavelet expansions for analysis of scattering from metallic cylinders," IEEE Antennas Propagat. Soc. Symp., 20-23, June 1994.

29. Wagner, R. L., P. Otto, and W. C. Chew, "Fast waveguide mode compuation using wavelet-like basis functions," IEEE Microwave Guided Wave Lett., Vol. 3, 208-210, July 1993.

30. Franza, O. P., R. L. Wagner, and W. C. Chew, "Wavelet-like basis functions for solving scattering integral equation," IEEE Antennas Propagat. Soc. Symp., 3-6, June 1994.

31. Kim, H. and H. Ling, "On the application of fast wavelet transform to the integral equation of electromagnetic scattering problems," Microwave Opt. Technol. Lett., Vol. 6, No. 3, 168-173, Mar. 1993.
doi:10.1002/mop.4650060305

32. Goswami, J. C., A. K. Chan, and C. K. Chui, "On solving firstkind integral equations using wavelets on a bounded interval," IEEE Trans. Antenna Propagat., Vol. 43, No. 6, 614-622, June 1995.
doi:10.1109/8.387178

33. Wang, G., "A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects," IEEE Trans. Antenna Propagat., Vol. 43, No. 2, 170-178, Feb. 1995.
doi:10.1109/8.366379