PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 21 > pp. 71-89

Analysis of Scattering from Perfectly Conducting Plates by the Use of AMMM

By C. Su and T. K. Sarkar

Full Article PDF (733 KB)

Citation:
C. Su and T. K. Sarkar, "Analysis of Scattering from Perfectly Conducting Plates by the Use of Ammm," Progress In Electromagnetics Research, Vol. 21, 71-89, 1999.
doi:10.2528/PIER98040100
http://www.jpier.org/PIER/pier.php?paper=980401

References:
1. Harrington, R. F., Field Computation by Moment Method, Hacmillan Press, New York, 1968.

2. Miller, E. K., L. Medgyesi-Mitschang, E. H. Newman, and Eds., Computational Electromagnetics: Frequency-Domain Method of Moments, New York: IEEE Press, 1992.

3. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc. IEEE, Vol. 81, No. 12, 1658-1684, Dec. 1993.
doi:10.1109/5.248956

4. Thiele, G. A., "Overview of selected hybrid method in radiating system analysis," Proc. IEEE, Vol. 80, No. 1, 67-78, Jan. 1992.
doi:10.1109/5.119567

5. Medgyesi-Mitschang, L. N. and D. S. Wang, "Hybrid methods in computational electromagnetics: A review," Computer Physics Communications, Vol. 68, 76-94, May 1991.
doi:10.1016/0010-4655(91)90194-P

6. Canning, F. X., "The impedance matrix localization method (IML) uses," IEEE AP, Vol. 41, No. 5, 1659-667, 1993.

7. Canning, F. X., "The impedance matrix localization method (IML) permits solution of large scatterers," IEEE Magnetics, Vol. 27, 4275-4277, Sept. 1991.
doi:10.1109/20.105046

8. Canning, F. X., "The impedance matrix localization method (IML) for MM calculation," IEEE AP Magazine, Vol. 32, l8-30, Oct. 1990.

9. Canning, F. X., "Transformations that produce a sparse moment method matrix," J. Electromag. Wave Applicat., Vol. 4, No. 9, 893-913, 1990.

10. Coifman, R., V. Rohklin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag.,, Vol. 35, 7-12, 1993.
doi:10.1109/74.250128

11. Rohklin, V., "Rapid solution of integral equations of scattering in two dimensions," J. Comput. Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

12. Rohklin, V., "Rapid solution of integral equations of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, 1985.
doi:10.1016/0021-9991(85)90002-6

13. Boag, A. and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. AP-42, 366-372, Mar. 1994.
doi:10.1109/8.280723

14. Michielssen, E. and A. Boag, "Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems," Microwave Opt. Tech. Lett., Vol. 7, No. 17, 790-795, Dec. 1994.
doi:10.1002/mop.4650071707

15. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," 11th Annu. Rev. Progress ACES, Monterey, CA, 614-620, Mar. 1995.

16. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas Propagat., Vol. AP-44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816

17. Chew, W. C., J. M. Jin, C. C. Lu, E. Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Trans. Antennas Propagat., Vol. AP-45, No. 3, 533-543, Mar. 1997.
doi:10.1109/8.558669

18. Su, Chaowei and T. K. Sarkar, "A multiscale moment method for solving Fredholm integral equation of the first kind," J. Electromag. Waves Appl., Vol. 12, 97-101, 1998.
doi:10.1163/156939398X00089

19. Su, Chaowe and T. K. Sarkar, "Electromagnetic scattering from coated strips utilizing the adaptive multiscale moment method," Progress In Electromagnetics Research, Vol. 8, 173-208, 1998.

20. Su, Chaowei and T. K. Sarkar, "Electromagnetic scattering from two-dimensional electrically large perfectly conducting objects with small cavities and humps by use of adaptive multiscale moment methods (AMMM)," J. Electromag. Waves Appl., Vol. 12, 885-906, 1998.
doi:10.1163/156939398X01114

21. Mittra, R., Y. Rahmat-Samii, D. V. Jamnejad, and W. A. Davis, "A new look at the thin-plate scattering problem," Rad. Sci., Vol. 8, No. 10, 869-875, Oct. 1973.
doi:10.1029/RS008i010p00869

22. Rahmat-Samii, Y. and R. Mittra, "Integral equation solution and RCS computation of a thin rectangular plate," IEEE Trans. Antennas Propagat., Vol. AP-22, No. 7, 608-610, July 1974.

23. Tran, T. V. and A. McCowen, "An improved pulse-basis conjugate gradient FFT method for the thin conducting plate problem," IEEE Trans. Antennas Propagat., Vol. AP-41, No. 2, 185-189, Feb. 1993.
doi:10.1109/8.214609

24. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans. Antennas Propagat., Vol. 36, No. 4, 518-526, Apr. 1988.
doi:10.1109/8.1141

25. Barkeshli, K. and J. L. Volakis, "On the implementation of the conjugate gradient Fourier transform method for scattering by planar plates," IEEE Trans. Antennas Propagat. Mag., Vol. 32, 19-29, Apr. 1990.

26. Catedra, M. F., J. G. Cuevas, and L. Nuno, "A scheme to analyze conducting plates of resonant size using the conjugate gradient method and the fast Fourier transform ," IEEE Trans. Antennas Propagat., Vol. AP-36, No. 12, 1744-1752, Dec. 1988.
doi:10.1109/8.14396

27. Shen, C. Y., K. J. Glover, M. I. Sancer, and A. D. Varvatsis, "The discrete Fourier transform method of solving different-integral equations in scattering theory," IEEE Trans. Antennas Propagat., Vol. AP-37, No. 8, 1032-1041, Aug. 1988.
doi:10.1109/8.34141

28. Zhamborn, A. P. M. and P. M. van den Berg, "A weak form of the conjugate gradient FFT method for plate problems," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 2, 224-228, Feb. 1991.


© Copyright 2014 EMW Publishing. All Rights Reserved