PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 22 > pp. 85-105

A New Formula for the Evaluation of the Impedance Matrix in the Method of Moments

By C. Su and T. K. Sarkar

Full Article PDF (838 KB)

Citation:
C. Su and T. K. Sarkar, "A New Formula for the Evaluation of the Impedance Matrix in the Method of Moments," Progress In Electromagnetics Research, Vol. 22, 85-105, 1999.
doi:10.2528/PIER98081501
http://www.jpier.org/PIER/pier.php?paper=9808151

References:
1. Harrington, R. F., Field Computation by Moment Method, Hacmillan Press, New York, 1968.

2. Miller, E. K., L. Medgyesi-Mitschang, E. H. Newman, and Eds., Computational Electromagnetics: Frequency-Domain Method of Moments, IEEE Press, New York, 1992.

3. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansions in method of moments," IEEE Trans.A ntennas Propagat., Vol. AP-41, No. 5, 610-619, May 1993.
doi:10.1109/8.222280

4. Goswami, J. C., A. K. Chan, and C. K. Chui, "On solving firs-tkind integral equations using wavelets on a bounded interval," IEEE Trans.A ntenna Propagat., Vol. AP-43, No. 6, 614-622, June 1995.
doi:10.1109/8.387178

5. Wang, G., "A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects," IEEE Trans.A ntennas Propagat., Vol. AP-43, No. 2, 170-178, February 1995.
doi:10.1109/8.366379

6. Canning, F. X., "The impedance matrix localization method (IML) uses," IEEE Trans.A ntennas Propagat., Vol. AP-41, No. 5, 659-667, 1993.
doi:10.1109/8.222285

7. Canning, F. X., "The impedance matrix localization method (IML) for MM calculation," IEEE AP Magazine, Vol. 32, 18-30, October 1990.

8. Coifman, R., V. Rohklin, and S. Wandzura, "The fast multipole method for the wave eqaution: A pedestrian prescription," IEEE Antennas Propagat.Mag., Vol. 35, 7-12, 1993.
doi:10.1109/74.250128

9. Rohklin, V., "Rapid solution of integral equations of scattering in two dimensions ," J.Comput.Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

10. Michielssen, E. and A. Boag, "Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems," Microwave Opt.T ech.L ett., Vol. 7, No. 17, 790-795, December 1994.
doi:10.1002/mop.4650071707

11. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," 11th Annu.R ev.Pr ogress ACES, 614-620, Monterey, CA, March 1995.

12. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans.A ntennas Propagat., Vol. AP-44, No. 8, 1086-1093, August 1996.
doi:10.1109/8.511816

13. Su, C. and T. K. Sarkar, "A multiscale moment method for solving Fredholm integral equation of the first kind," J.Ele ctromag. Waves Appl., Vol. 12, 97-101, 1998.
doi:10.1163/156939398X00089

14. Su, C. and T. K. Sarkar, "Electromagnetic scattering from coated strips utilizing the adaptive multiscale moment method," Progress In Electromagnetics Research, Vol. 18, 173-208, 1998.

15. Su, C. and T. K. Sarkar, "Electromagnetic scattering from two-dimensional electrically large perfectly conducting objects with small cavities and humps by use of adaptive multiscale moment methods (AMMM)," J. Electromag. Waves Appl., Vol. 12, 885-906, 1998.
doi:10.1163/156939398X01114

16. Sarkar, T. K., Application of Conjugate Gradient Method to Electromagnetics and Signal Analysis, Elsevier Press, N.Y., 1991.

17. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans.A ntennas Propagat., Vol. 36, No. 4, 518-526, April 1988.
doi:10.1109/8.1141

18. Barkeshli, K. and J. L. Volakis, "On the implementation of the conjugate gradient Fourier transform method for scattering by planar plates," IEEE Trans. Antennas Propagat. Mag., Vol. 32, 19-29, April 1990.

19. Catedra, M. F., J. G. Cuevas, and L. Nuno, "A scheme to analyze conducting plates of resonant size using the conjugate gradient method and the fast Fourier transform," IEEE Trans.A ntennas Propagat., Vol. AP-36, No. 12, 1744-1752, December 1988.
doi:10.1109/8.14396

20. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

21. Hodge, D. B., "Scattering by circular metallic," IEEE Trans.A ntennas Propagat., Vol. AP-28, No. 9, 707-712, September 1980.
doi:10.1109/TAP.1980.1142399

22. Deshpande, M. D., C. R. Cockrell, F. B. Beck, E. Vedeler, and M. B. Koch, "Analysis of electromagnetic scattering from irregularly, thin, metallic flat plates," NASA Technical Paper, NAS 1.60:3364, 1993.


© Copyright 2014 EMW Publishing. All Rights Reserved