PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 21 > pp. 319-335

Fractional Solutions for the Helmholtz's Equation in a Multilayered Geometry

By Q. A. Naqvi and A. A. Rizvi

Full Article PDF (274 KB)

Citation:
Q. A. Naqvi and A. A. Rizvi, "Fractional Solutions for the Helmholtz's Equation in a Multilayered Geometry," Progress In Electromagnetics Research, Vol. 21, 319-335, 1999.
doi:10.2528/PIER98100501
http://www.jpier.org/PIER/pier.php?paper=9810051

References:
1. Engheta, N., "Use of fractional integration to propose some “fractional” solutions for the scalar Helmholtz equation," Jin A. Kong (ed.), Progress in Electromagnetics Research (PIER), Monograph Series Volume 12, 107-132, 1996.

2. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antenna and Propagation Mag., Vol. 39, 35-46, 1997.
doi:10.1109/74.632994

3. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

4. Naqvi, Q. A., Scattering of ElectromagneticWaves from A Buried Cylinder, Ph.D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1997.

5. Naqvi, Q. A. and A. A. Rizvi, "Low contrast circular cylinder buried in a grounded dielectric layer," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 11, 1527-1536, 1998.
doi:10.1163/156939398X00458

6. Mughal, M. J., Radiation by Line Sources in Buried and Covered Regions , M.Phil. Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1996.

7. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.


© Copyright 2014 EMW Publishing. All Rights Reserved