PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 77-96

Performance Analysis of a GLRT in Late-Time Radar Target Detection

By J. E. Mooney, Z. Ding, and L. S. Riggs

Full Article PDF (554 KB)

Citation:
J. E. Mooney, Z. Ding, and L. S. Riggs, "Performance Analysis of a Glrt in Late-Time Radar Target Detection," Progress In Electromagnetics Research, Vol. 24, 77-96, 1999.
doi:10.2528/PIER99012001
http://www.jpier.org/PIER/pier.php?paper=9901201

References:
1. Mooney, J. E., Z. Ding, and L. S. Riggs, "Robust target identification in white Gaussian noise for ultra-wideband radar systems," IEEE Trans. Antennas Propagation, Vol. AP-46, 1817-1823, Dec. 1998.
doi:10.1109/8.743818

2. Baum, C. E., E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "The singularity expansion method and its application to target identification," Proceedings of the IEEE, Vol. 79, 1481-1492, Oct. 1991.
doi:10.1109/5.104223

3. Rothwell, E. J., M. Chen, D. P. Nyquist, P. Ilavarasan, J. E. Ross, R. Bebermeyer, and Q. Li, "A general E-pulse scheme arising from the dual early-time/late-time behavior of radar scatterers," IEEE Trans. Antennas Propagat., Vol. AP-42, 1336-1341, Sept. 1994.
doi:10.1109/8.318656

4. Baum, C. E., "On the singularity expansion method for the solution of electromagnetic interaction problems,", Interaction Note 88, Air Force Weapons Lab, 1971.

5. Srinath, M., P. K. Rajasekaran, and R. Viswanathan, Introduction to Statistical Signal Processing with Applications, Prentice Hall, 1996.

6. Van Trees, H. L., Detection, Estimation, and Modulation Theory Part I, John Wiley & Sons, 1967.

7. Abramovitz, M. and I. A. Stegun, Handbook of Mathematical Functions, U.S. Government Printing Office, Washington, D.C.: National Bureau of Standards, 1964.

8. Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 1983.

9. Papoulis, A., Probability and Statistics, Prentice Hall, 1990.

10. Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, Ch. 29, 433-479, John Wiley & Sons, 1995.

11. Searle, S. R., Linear Models, Ch. 2, 54-64, John Wiley & Sons, 1971.

12. Ding, C. G., "Algorithm AS 275: Computing the non-central χ2 distribution function," Applied Statistics, Vol. 41, 478-482, 1992.
doi:10.2307/2347584

13. Ashour, S. K. and A. I. Abdel-Samad, "On the computation of non-central χ2 distribution function," Communications in Statistics-Simulation and Computation, Vol. 19, 1279-1291, 1990.
doi:10.1080/03610919008812916

14. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.
doi:10.1109/9780470544631

15. Richards, M. A., "SEM representation of the early and late time fields scattered from wire targets," IEEE Trans. Antennas Propagation, Vol. AP-42, 564-566, 1994.
doi:10.1109/8.286231

16. Baum, C. E., "Representation of surface current density and far scattering in EEM and SEM with entire functions," New Perspectives on Problems in Classical and Quantum Physics, Part II: Acoustic Propagation and Scattering, Electromagnetic Scattering, Interaction Note 486, Phillips Laboratory, Feb. 1992; Ch. 13, 273-316, in P. P. Delsanto and A. W. Saenz, eds., Gordon and Breach, 1998.

17. Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 1, Ch. 18, 415-493, John Wiley & Sons, 1995.

18. Brillinger, D. R., "The analysis of time series collected in an experimental design," Multivariate Analysis-III, P. R. Krishnaiah 1(Ed.) 241-256, Academic Press, 973.


© Copyright 2014 EMW Publishing. All Rights Reserved