PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 163-183

Far-Field Decoupled Basis for the Method of Moments-2D Case

By R. V. Sabariego, L. Landesa, F. Obelleiro, and A. G. Pino

Full Article PDF (503 KB)

Citation:
R. V. Sabariego, L. Landesa, F. Obelleiro, and A. G. Pino, "Far-Field Decoupled Basis for the Method of Moments-2D Case," Progress In Electromagnetics Research, Vol. 24, 163-183, 1999.
doi:10.2528/PIER99032901
http://www.jpier.org/PIER/pier.php?paper=9903291

References:
1. Harrington, R. F., Field Computation by Moment Method, IEEE Press, 1993.
doi:10.1109/9780470544631

2. Rokhlin, V., "Rapid solution of integral equations of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, Sep. 1985.
doi:10.1016/0021-9991(85)90002-6

3. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, Feb. 1990.
doi:10.1016/0021-9991(90)90107-C

4. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Ant. Prop., Vol. 40, 634-641, June 1992.
doi:10.1109/8.144597

5. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. Prop. Mag., Vol. 35, 7-12, June 1993.
doi:10.1109/74.250128

6. Lu, C. C. and W. C. Chew, "Fast far field approximation for calculating the RCS of large objects," IEEE APS and URSI Intl. Symposium, 22-25, 1995.

7. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Micr. Opt. Tech. Lett., Vol. 10, 14-19, Sept. 1995.
doi:10.1002/mop.4650100107

8. Wagner, R. L. and W. C. Chew, "A ray-propagation fast multipole algorithm," Micr. Opt. Tech. Lett., Vol. 7, 435-438, 1994.
doi:10.1002/mop.4650071003

9. Burkholder, R. J. and D.-H. Kwon, "High-frequency asymptotic acceleration of the fast multipole method," Rad. Sci., Vol. 31, 1199-1206, Sept. 1996.
doi:10.1029/96RS01785

10. Michielssen, E. and W. C. Chew, "Fast steepest descent path algorithm for analyzing scattering from two-dimensional objects," Rad. Sci., Vol. 31, No. 5, 1215-1224, 1996.
doi:10.1029/96RS01364

11. Canning, F. X., "The impedance matrix-localization (IML) method for moment-method calculations," IEEE Ant. Prop. Mag., Vol. 35, 18-30, Oct. 1990.
doi:10.1109/74.80583

12. Canning, F. X., "Improved impedance matrix localization method," IEEE Trans. Ant. Prop., Vol. 41, 659-667, May 1993.
doi:10.1109/8.222285

13. Canning, F. X., "Singular value descomposition of integral equations fo EM and aplications to the cavity resonance problem," IEEE Trans. Ant. Prop., Vol. 37, 1156-1163, Sept. 1989.
doi:10.1109/8.35796

14. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of the electromagnetic integral equation," IEEE Trans. Ant. Prop., Vol. 43, 802-810, Aug. 1995.
doi:10.1109/8.402199

15. Baharav, Z. and Y. Leviatan, "Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations," Micr. Opt. Tech. Lett., Vol. 12, 145-150, June 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<145::AID-MOP7>3.0.CO;2-H

16. Baharav, Z. and Y. Leviatan, "Impedance matrix compression using adaptatively constructed basis functions," IEEE Trans. Ant. Prop., Vol. 44, 1231-1238, Sept. 1996.
doi:10.1109/8.535381

17. Rao, S. M. and G. Gothard, "A new technique to generate a sparse matrix using the method of moments for electromagnetic scattering problems," Micr. Opt. Tech. Lett., Vol. 19, 271-274, Nov. 1998.

18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1988.

19. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1989.

20. Abramowitz, M. and I. A. Stegun (Eds.), Handbook of Mathematical Functions, Dover Publications Inc., 1970.


© Copyright 2014 EMW Publishing. All Rights Reserved