PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 311-335

Sdra Approach for Higher-Order Impedance Boundary Conditions for Complex Multi-Layer Coatings on Curved Conducting Bodies

By V. Galdi and I. M. Pinto

Full Article PDF (605 KB)

Citation: (See works that cites this article)
V. Galdi and I. M. Pinto, "Sdra Approach for Higher-Order Impedance Boundary Conditions for Complex Multi-Layer Coatings on Curved Conducting Bodies," Progress In Electromagnetics Research, Vol. 24, 311-335, 1999.
doi:10.2528/PIER99032903
http://www.jpier.org/PIER/pier.php?paper=9903293

References:
1. Strifors, H. C. and G. C. Gaunaurd, "Scattering of electromagnetic pulses by simple-shaped targets with radar cross section modified by a dielectric coating," IEEE Trans. Antennas Propagat., Vol. 46, No. 9, 1252-1262, 1998.
doi:10.1109/8.719967

2. Schulz, R. B., V. C. Plantz, and D. R. Brush, "Shielding theory and practice," IEEE Trans. Electromag. Comp., Vol. 30, No. 3, 187-201, 1988.
doi:10.1109/15.3297

3. Nishizawa, S. and O. Hashimoto, "Effectiveness analysis of lossy dielectric shields for a three-layered human model," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 277-282, 1999.
doi:10.1109/22.750223

4. Michielssen, E., J.-M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, 1024-1031, 1993.
doi:10.1109/22.238519

5. Norgren, M. and S. He, "On the possibility of reflectionless coating of a homogeneous bianisotropic layer on a perfect conductor," Electromagnetics, Vol. 17, 295-307, 1997.
doi:10.1080/02726349708908541

6. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Press, Stevenage, U.K., 1995.
doi:10.1049/PBEW041E

7. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis, Washington, 1995.
doi:10.1201/9781315215365

8. Harrington, R. F., Field Computation by Moment Methods, McMillan, New York, 1960.

9. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineering, Univ. Press, Cambridge, 1990.

10. Leontovich, M. A., Investigations on Radiowave Propagation, Part II, Academy of Sciences, Moskow, 1948.

11. Karp, S. N., F. C. Karal, and Jr., "Generalized impedance boundary conditions with application to surface wave structures," Electromagnetic Theory, Part I, 479-483, Pergamon, New York, 1965.

12. Weinstein, A. L., The Theory of Diffraction and the Factorization Method, Golem, Boulder, Co., 1969.

13. Senior, T. B. A. and J. L. Volakis, "Derivation and application of a class of generalized impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 37, No. 12, 1566-1572, 1989.
doi:10.1109/8.45099

14. Idemen, M., "Universal boundary conditions of the electromagnetic fields," J. Phys. Soc. Jap., Vol. 59, No. 1, 71-80, 1990.
doi:10.1143/JPSJ.59.71

15. Volakis, J. L. and T. B. A. Senior, "Sheet simulation of a thin dielectric layer," Radio Science, Vol. 22, No. 7, 1261-1272, 1987.
doi:10.1029/RS022i007p01261

16. Volakis, J. L. and T. B. A. Senior, "Application of a class of generalized boundary conditions to scattering by a metal-backe dielectric half-plane," Proc. IEEE, Vol. 77, No. 5, 796-805, 1989.
doi:10.1109/5.32070

17. Ammari, H. and S. He, "Generalized effective impedance boundary conditions for an inhomogeneous thin layer in electromagnetic scattering," J. Electromagn. Waves Applicat., Vol. 11, 1197-12, 1997.
doi:10.1163/156939397X01106

18. Ammari, H. and S. He, "Effective impedance boundary conditions for an inhomogeneous thin layer on a curved metallic surface," IEEE Trans. Antennas Propagat., Vol. 46, No. 5, 710-715, 1998.
doi:10.1109/8.668915

19. Barkeshli, K. and J. L. Volakis, "TE scattering by a one-dimensional groove in a ground-plane using higher-order impedance boundary conditions," IEEE Trans. Antennas Propagat., Vol. 38, No. 9, 1421-1428, 1990.
doi:10.1109/8.56994

20. Volakis, J. L. and H. H. Syed, "Application of higher order boundary conditions to scattering by multilayer coated cylinders," J. Electromagn. Waves Applicat., Vol. 4, No. 2, 1157-1180.
doi:10.1163/156939390X00753

21. Ricoy, M. A. and J. L. Volakis, "Derivation of generalized transition/boundary conditions for planar multiple-layer structures," Radio Science, Vol. 25, No. 4, 391-405, 1990.
doi:10.1029/RS025i004p00391

22. Tretyakov, S. A., "Generalized impedance boundary conditions for isotropic multilayers," Microwave Opt. Technol. Lett., Vol. 17, No. 4, 262-265, 1998.
doi:10.1002/(SICI)1098-2760(199803)17:4<262::AID-MOP13>3.0.CO;2-7

23. Galdi, V. and I. M. Pinto, "Derivation of higher-order impedance boundary conditions for stratified coatings composed of inhomogeneous-dielectric and/or homogeneous-bianisotropic layers,", submitted to Radio Science, Feb. 1999.

24. Kong, J. A., Theory of Electromagnetic Waves, Wiley, New York, 1975.

25. Graglia, R. D., M. S. Sarto, and P. L. E. Uslenghi, "TE and TM modes in cylindrical metallic structures filled with bianisotropic material," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 8, 1470-1477, 1996.
doi:10.1109/22.536030

26. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.

27. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 91-96, 1991.
doi:10.1109/8.64441

28. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman & Hall, London, U.K., 1983.

29. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964.

30. Jaggard, D. L., A. R. Michelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Phys., Vol. 118, 211-216, 1979.
doi:10.1007/BF00934418

31. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE Antennas Propagat. Soc. Newsletter, Vol. 30, No. 5, 6-12, 1988.
doi:10.1109/MAP.1988.6086107

32. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.


© Copyright 2014 EMW Publishing. All Rights Reserved