Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 25 > pp. 223-238

Fractional Dual Solutions and Corresponding Sources

By Q. A. Naqvi and A. A. Rizvi

Full Article PDF (260 KB)

Citation: (See works that cites this article)
Q. A. Naqvi and A. A. Rizvi, "Fractional Dual Solutions and Corresponding Sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.

1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

2. Engheta, N., "A note on fractional calculus and images method for dielectric spheres," J. Electromagnetic Waves and Appl., Vol. 9, 1179-1188, Sept. 1995.

3. Engheta, N., "On fractional calculus and fractional multipoles in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 44, 554-566, Apr. 1996.

4. Engheta, N., "Electrostatic Fractional images methods for perfectly conducting wedges and cones," IEEE Trans. Antennas Propagat., Vol. 44, 1565-1574, Dec. 1996.

5. Engheta, N., "Use of fractional integration to propose some ``fractional" solutions for the scalar Helmholtz equation," Progress in Electromagnetics Research (PIER), Jin A. Kong (Ed.), Monograph Series Vol. 12, 107-132, 1996.

6. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antenna and Propagation Mag., Vol. 39, 35-46, 1997.

7. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, 1998.

8. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.

9. Naqvi, Q. A. and A. A. Rizvi, "Fractional solutions to the Helmholtz’s equation in a multilayered geometry," Progress in Electromagnetics Research (PIER), Jin A. Kong (Ed.), Monograph Series Vol. 21, 319-335 1999.

© Copyright 2014 EMW Publishing. All Rights Reserved