PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 25 > pp. 111-129

Rectangular Conducting Waveguide Filled with Uniaxial Anisotropic Media: a Modal Analysis and Dyadic Green's Function

By S. Liu, L. W. Li, M. S. Leong, and T. S. Yeo

Full Article PDF (518 KB)

Citation: (See works that cites this article)
S. Liu, L. W. Li, M. S. Leong, and T. S. Yeo, "Rectangular Conducting Waveguide Filled with Uniaxial Anisotropic Media: a Modal Analysis and Dyadic Green's Function," Progress In Electromagnetics Research, Vol. 25, 111-129, 2000.
doi:10.2528/PIER99052501
http://www.jpier.org/PIER/pier.php?paper=9905251

References:
1. Chen, H. C., Theory of Electromagnetic Waves, McGraw-Hill, New York, 1983.

2. Kong, J. A., Electromagnetic Wave Theory, The 2nd ed., John Wiley & Sons, New York, 1986.

3. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

4. Singh, J. and K. Thyagarajan, "Analysis of metal clad uniaxial waveguides," Optics Communications, Vol. 85, 397-402, 1991.
doi:10.1016/0030-4018(91)90571-T

5. Lu, M. and M. M. Fejer, "Anisotropic dielectric waveguides," J. Opt. Soc. Am. A, Vol. 10, No. 2, 246-261, Feb. 1993.
doi:10.1364/JOSAA.10.000246

6. Toscano, A. and L. Vegni, "Spectral electromagnetic modeling of a planar integrated structure with a general grounded anisotropic slab," IEEE Trans. Ant. Prop., Vol. 41, No. 3, 362-370, Mar. 1993.
doi:10.1109/8.233123

7. Manenkov, A. B., "Orthogonality relations for the eigenmodes of lossy anisotropic waveguides (fibres)," IEE Proceedings-J, Vol. 140, No. 3, 206-212, June 1993.

8. Sawa, S., T. Kitamura, M. Geshiro, and T. Yoshikawa, "Low loss optical waveguide bends consisting of uniaxial crystalline material," IEICE Trans. Electron., Vol. E78-C, No. 10, 1373-1377, Oct. 1995.

9. Uzunoglu, N. K., P. G. Cottis, and J. G. Fikioris, "Excitation of electromagnetic waves in a gyroelectric cylinder," IEEE Trans. Ant. Propa., Vol. AP-33, No. 1, 90-99, Jan. 1985.
doi:10.1109/TAP.1985.1143471

10. Ren, W., "Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Physical Review E, Vol. 47, No. 1, 664-673, Jan. 1993.
doi:10.1103/PhysRevE.47.664

11. Lindell, I. V., "TE/TM decomposition of electromagnetic sources in uniaxial anisotropic media," Microwave and Optical Tech. Lett., Vol. 9, No. 2, 108-111, June 1995.
doi:10.1002/mop.4650090215

12. Lindell, I. V. and F. Olyslager, "Decomposition of electromagentic sources in axially chiral uniaxial anisotropic media," J. Electromagnetic Waves and Applications, Vol. 10, No. 1, 51-59, 1996.
doi:10.1163/156939396X00207

13. Lindell, I. V., "Decomposition of electromagnetic fields in bianisotropic media," J. Electromagnetic Waves and Applications, Vol. 11, No. 5, 645-657, 1997.
doi:10.1163/156939397X00882

14. Lee, J. K. and J. A. Kong, "Dyadic Green’s functions for layered anisotropic medium," Electromagnetics, Vol. 3, 111-130, 1983.
doi:10.1080/02726348308915180

15. Weiglhofer, W. S., "Dyadic Greens functions for general uniaxial media," IEE Proc. H., Vol. 137, No. 1, 5-10, Feb. 1990.

16. Weiglhofer, W. S., "A dyadic Green’s function representation in electrically gyrotropic media," AEU, Vol. 47, No. 3, 125-130, 1993.

17. Barkeshli, S., "Electromagnetic dyadic Green’s function for multilayered symmetric gyroelectric media," Radio Science, Vol. 28, No. 1, 23-36, Jan.-Feb. 1993.
doi:10.1029/92RS01926

18. Barkeshli, S., "An efficient asymptotic closed-form dyadic Green’s function for grounded double-layered anisotropic uniaxial material slabs," J. Electromagnetic Waves and Applications, Vol. 7, No. 6, 833-856, 1993.
doi:10.1163/156939393X00903

19. Cottis, P. G. and G. D. Kondylis, "Properties of the dyadic Green’s function for an unbounded anisotropic medium," IEEE Trans. Ant. Prop., Vol. 43, No. 2, 154-161, Feb. 1995.
doi:10.1109/8.366377

20. Mudaliar, S. and J. K. Lee, "Dyadic Green’s functions for a two-layer biaxially anisotropic medium," J. Electromagnetic Waves and Applications, Vol. 10, 909-923, 1996.
doi:10.1163/156939396X00027

21. Tai, C. T., Dyadic Green’s Functions in Electromagnetic Theory, 2nd Ed., IEEE Press, Piscataway, New Jersey, 1994.

22. Pearson, L. W., "On the spectral expansion of the electric and magnetic dyadic Greens functions in cylindrical harmonics," Radio Science, Vol. 18, No. 2, 166-174, March-April 1983.
doi:10.1029/RS018i002p00166


© Copyright 2014 EMW Publishing. All Rights Reserved