PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 121-146

A Step-Frequency Radar Imaging System for Microwave Nondestructive Evaluation

By W. H. Weedon, W. C. Chew and P. E. Mayes

Full Article PDF (604 KB)

Citation: (See works that cites this article)
W. H. Weedon, W. C. Chew and P. E. Mayes, "A Step-Frequency Radar Imaging System for Microwave Nondestructive Evaluation," Progress In Electromagnetics Research, Vol. 28, 121-146, 2000.
doi:10.2528/PIER99062501
http://www.jpier.org/PIER/pier.php?paper=9906251

References:
1. Weedon, W. H., "Broadband microwave inverse scattering: Theory and experiment,", Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1994.

2. Bryant, G. H., Principles of Microwave Measurements, Peter Peregrinus Ltd., London, 1988.

3. Landt, J. A., "Typical time domain measurement configurations," Time Domain Measurements in Electromagnetics, (E. K. Miller, ed.), Van Nostrand Reinhold, New York, 1986.
doi:10.1109/PROC.1986.13406

4. Lawton, R., S. Riad, and J. Andrews, "Pulse & time-domain measurements," Proc. IEEE, Vol. 74, 77-81, 1986.
doi:10.1088/0266-5611/9/5/005

5. Weedon, W. H. and W. C. Chew, "Time-domain inverse scattering using the local shape function (LSF) method," Inverse Probl., Vol. 9, 551-564, 1993.

6. Moghaddam, M., "Forward and inverse scattering problems in the time domain,", Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1991.
doi:10.1002/ima.1850030405

7. Moghaddam, M., W. C. Chew, and M. Oristaglio, "Comparison of the Born iterative method and Tarantola’s method for an electromagnetic time-domain inverse problem ," Int. J. Imaging Syst. Technol., Vol. 3, 318-333, 1991.
doi:10.1109/36.124225

8. Moghaddam, M. and W. C. Chew, "Nonlinear two-dimensional velocity profile inversion using time domain data," IEEE Trans. Geosci. Remote Sensing, Vol. 30, Jan. 1992.
doi:10.1109/8.214608

9. Moghaddam, M. and W. C. Chew, "Study of some practical issues in inversion with the Born iterative method using timedomain data," IEEE Trans. Antennas Propagat., Vol. 41, No. 2, 177-184, 1993.

10. Tarantola, A., "The seismic reflection inverse problem," Inverse Problems of Acoustic and Elastic Waves, (F. Santosa, Y. H. Pao, W. Symes, and C. Holland, eds.), SIAM, Philadelphia, 1984.
doi:10.1177/016173468200400404

11. Devaney, A. J., "A filtered backpropagation algorithm for diffraction tomography," Ultrason. Imaging, Vol. 4, 336-360, 1982.
doi:10.1109/TBME.1983.325037

12. Devaney, A. J., "A computer simulation study of diffraction tomography," IEEE Trans. Biomed. Eng., Vol. BME-30, 377-386, 1983.
doi:10.1109/PROC.1979.11440

13. Kak, A. C., "Computerized tomography with x-ray, emission and ultrasound sources," Proc. IEEE, Vol. 67, No. 9, 1245-1272, 1979.
doi:10.1109/22.79111

14. Broquetas, A., J. Romeu, J. M. Rius, A. R. Elias-Fuste, and L. Jofre, "Cylindrical geometry: A further step in active microwave tomography," IEEE Trans. Microwave Theory Tech., Vol. 39, 836-844, May 1991.

15. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand, New York, 1990.
doi:10.1109/42.56334

16. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Medical Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1002/ima.1850020207

17. Kleinman, R. E. and P. M. van den Berg, "Nonlinearized approach to profile inversion," Int. J. Imaging Syst. Technol., Vol. 2, 119-126, 1990.
doi:10.1109/8.121595

18. Joachimowicz, N., C. Pichot, and J.-P. Hugonin, "Inverse scattering: an iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 12, 1742-1752, 1991.

19. Chew, W. C. and G. P. Otto, "Microwave imaging of multiple conducting cylinders using local shape functions," IEEE Microwave Guided Wave Lett., Vol. 2, 284-286, July 1992.
doi:10.1109/22.265541

20. Otto, G. P. and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 1, 137-141, 1994.
doi:10.1109/22.372110

21. Caorsi, S., S. Ciaramella, G. L. Gragnani, and M. Pastorino, "On the use of regularization techniques in numerical inverse-scattering solutions for microwave imaging applications," IEEE Trans. Microwave Theory Tech., Vol. 43, 632-640, March 1995.

22. Gibson, P. J., "The Vivaldi aerial," Ninth European Microwave Conference, Brighton, U.K., 1979.

23. Frantz, K. and P. E. Mayes, "Broadband feeds for Vivaldi antennas," Proceedings of the Antenna Applications Symposium, University of Illinois, Urbana, September 1987.

24. Sengupta, D. L. and J. E. Ferris, "Rudimentary horn antenna," IEEE Trans. Antennas Propagat., Vol. AP-19, January 1971.

25. Yngvesson, K. S., D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johansson, "Endfire tapered slot antennas on dielectric substrates," IEEE Trans. Antennas Propagat., Vol. AP-33, December 1985.


© Copyright 2014 EMW Publishing. All Rights Reserved