PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 133-164

Moving Coordinate Frame FDTD Analysis of Long Range Tracking of Pulsed Fields in Graded Index Waveguides

By Y. Pemper, V. Lomakin, E. Heyman, R. Kastner and R. W. Ziolkowski

Full Article PDF (503 KB)

Citation:
Y. Pemper, V. Lomakin, E. Heyman, R. Kastner and R. W. Ziolkowski, "Moving Coordinate Frame FDTD Analysis of Long Range Tracking of Pulsed Fields in Graded Index Waveguides," Progress In Electromagnetics Research, Vol. 26, 133-164, 2000.
doi:10.2528/PIER99080104
http://www.jpier.org/PIER/pier.php?paper=9908014

References:
1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. AP-14, 302-307, 1966.

2. Taflove, A., Computational Electrodynamics, The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.

3. Shlager, K. L. and J. B. Schneider, "A selective survey of the finite-difference time-domain literature," IEEE Antennas Propagat. Magazine, Vol. 37, No. 4, 39-56, 1995.
doi:10.1109/74.414731

4. Fidel, B., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving window approach to pulse propagation," Proc. of the 1994 International IEEE/AP-S Symposium, 1414-1417, Seattle, WA.

5. Fidel, B., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving frame approach to pulse propagation," J. of Comp. Phys., Vol. 138, 480-500, 1997.
doi:10.1006/jcph.1997.5827

6. Hile, C. V. and W. L. Kath, "Numerical solutions of Maxwell’s equations for nonlinear-optical pulse propagation," J. Opt. Soc. Am. B, Vol. 13, No. 6, 1135-1145, 1996.
doi:10.1364/JOSAB.13.001135

7. Pemper, Y., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving coordinate frame approach for long range tracking of collimated wavepackets," SIAM J. Appl. Math., submitted.

8. Lee, D. and A. D. Pierce, "Parabolic equation development in recent decade," J. Comput. Acoust., Vol. 3, No. 2, 95-173, 1995.
doi:10.1142/S0218396X95000070

9. Jensen, F. B., W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, AIP Press, Woodbury, NY, 1994.

10. Masoudi, H. M. and J. M. Arnold, "Parallel beam propagation methods," IEEE Photon. Technol. Lett., Vol. 6, No. 7, 848-850, 1994.
doi:10.1109/68.311475

11. Murphy, J. E., "Finite-difference treatment of a time-domain parabolic equation: Theory," J. Acoust. Soc. Am., Vol. 77, No. 5, 1406-1417, 1985.

12. Masoudi, H. M. and J. M. Arnold, "Parallel beam propagation method for the analysis of second harmonic generation," IEEE Photon. Technol. Lett., Vol. 7, No. 4, 400-402, 1995.
doi:10.1109/68.376815

13. McDonald, B. E. and W. A. Kuperman, "Time domain formulation for pulse propagation including nonlinear behavior at a caustic," J. Acoust. Soc. Am., Vol. 81, No. 5, 1406-1417, 1987.
doi:10.1121/1.394546

14. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Mathematics of Computation, Vol. 31, 629-651, 1977.
doi:10.1090/S0025-5718-1977-0436612-4

15. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagnetic Compatibility, Vol. 23, 377-382, 1989.

16. Heyman, E., "Pulsed beam propagation in an inhomogeneous medium," IEEE Trans. Antennas Propagat., Vol. AP-42, 311-319, 1994.
doi:10.1109/8.280715

17. Yariv, A., Introduction to Optical Electronics, Holt, Rinehart and Winston, 1971.

18. Aloni, E., R. Kastner, E. Heyman, and R. W. Ziolkowski, "Reduction of numerical dispersion errors in the FDTD with multiple moving coordinate systems ,", URSI Meeting, Baltimore, MD, July 21-26, 1996.


© Copyright 2014 EMW Publishing. All Rights Reserved