PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 313-338

Quantification of the Induced Electric Field in a Material Sample Placed within an Energized Cylindrical Cavity

By J.-P. Zhang and K.-M. Chen

Full Article PDF (425 KB)

Citation:
J.-P. Zhang and K.-M. Chen, "Quantification of the Induced Electric Field in a Material Sample Placed Within an Energized Cylindrical Cavity," Progress In Electromagnetics Research, Vol. 28, 313-338, 2000.
doi:10.2528/PIER99090101
http://www.jpier.org/PIER/pier.php?paper=9909011

References:
1. Zaki, K. A. and A. E. Atia, "Modes in dielectric-loaded waveguides and resonators," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-31, No. 12, 1039-1045, Dec. 1983.
doi:10.1109/TMTT.1983.1131658

2. Kajbez, D., A. V. Glisson, and J. James, "Computed modal field distribution for isolated dielectric resonators," 1984 IEEE MTT-S International Microwave Symposium Digest, 193-195, June 1984.

3. Zaki, K. A. and C. Chen, "Intensity and distribution of hybrid-mode fields in dielectric-loaded waveguides," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-33, No. 12, 1442-1447, Dec. 1985.
doi:10.1109/TMTT.1985.1133237

4. Maj, S. and M. Pospieszalski, "A composite cylindrical dielectric resonator," 1984 IEEE MTT-S International Microwave Symposium Digest, 190-192, June 1984.

5. Krupka, J., "Optimization of an electromagnetic basis for determination of the resonant frequency of microwave cavities partially filled with a dielectric," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-31, No. 3, 302-305, March 1983.
doi:10.1109/TMTT.1983.1131480

6. Kajfez, D., A. V. Glisson, and J. James, "Computed modal field distribution for isolated dielectric resonators," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-32, No. 12, 1609-1616, Dec. 1984.
doi:10.1109/TMTT.1984.1132900

7. Ayappa, K. G., H. T. Davis, E. A. Davis, and J. Gordon, "Two-dimensional finite element analysis of microwave heating," AIChE Journal, Vol. 38, 1577-1592, Oct. 1992.

8. Jia, X. and P. Jolly, "Simulation of microwave field and power distribution in a cavity by a three-dimensional finite element method," Journal of Microwave Power and Electromagnetic Energy, Vol. 27, No. 1, 11-22, 1992.
doi:10.1080/08327823.1992.11688166

9. Liu, F., I. Turner, and M. Bialkowski, "A finite-difference time-domain simulation of power density distribution in a dielectric loaded microwave cavity," Journal of Microwave Power and Electromagnetic Energy, Vol. 29, 138-148, 1994.
doi:10.1080/08327823.1994.11688242

10. Zhao, H., I. Turner, and F. W. Liu, "Numerical simulation of the power density distribution generated in a multimode cavity by using the method of lines technique to solve directly for the electric field," IEEE Trans. on Microwave Theory and Technologies, Vol. MTT-44, 2185-2194, 1996.
doi:10.1109/22.556446

11. Torres, F. and B. Jecko, "Complete FDTD analysis of microwave heating processing in frequency-dependent and temperature-dependent media," IEEE Trans. Microwave Theory Tech., Vol. MTT-45, 108-117, 1997.
doi:10.1109/22.552039

12. Fu, W. and A. Metaxas, "Numerical prediction of three-dimensional power density distribution in a multi-mode cavity," Journal of Microwave Power and Electromagnetic Energy, Vol. 29, 67-75, 1994.
doi:10.1080/08327823.1994.11688233

13. Tai, C. T., Dyadic Green’s Functions in Electromagnetic Theory, IEEE Press2nd Ed., , 1993.

14. Johnson, W. A., A. Q. Howard, and D. G. Dudley, "On the irrotational component of the electric Green’s function," Radio Science, Vol. 14, 961-967, 1979.
doi:10.1029/RS014i006p00961

15. Collin, R. E., "On the incompleteness of E and H modes in waveguides," Can. J. Phys., Vol. 51, 1135-1140, 1973.
doi:10.1139/p73-150

16. Howard, A. Q., "On the longitudinal component of the Green’s function dyadic," Proc. IEEE, Vol. 62, 1704-1705, 1974.
doi:10.1109/PROC.1974.9686

17. Tai, C. T., "Equivalent layers of surface charge, current sheet, and polarization in the eigenfunction expansions of Green’s functions in electromagnetic theory," IEEE Trans. Antennas and Propagation, Vol. AP-20, 733-739, 1981.
doi:10.1109/TAP.1981.1142660

18. Tai, C. T. and P. Rozenfeld, "Different representations of dyadic Green’s functions for a rectangular cavity," IEEE Trans. Microwave Theory Tech., Vol. MTT-24, 597-601, 1976.
doi:10.1109/TMTT.1976.1128914

19. Zhang, J. and K. M. Chen, "Mode-matching analysis of the induced electric field in a material sample placed within an energized cylindrical cavity,", current issue.

20. Hansen, W. W., "A new type of expansion in radiation problems," Physics Review, Vol. 47, 139-143, 1935.
doi:10.1103/PhysRev.47.139

21. Hansen, W. W., "Directional characteristic of antenna over a plane earth ," Journal of Applied Physics, Vol. 7, 460-465, 1936.

22. Hansen, W. W., "Transformations useful in certain antenna calculation," Journal of Applied Physics, Vol. 8, 282-286, 1937.
doi:10.1063/1.1710293

23. Zhang, J., "Interaction of electromagnetic fields with a material sample placed within an energized cavity,", Ph.D. Dissertation, Michigan State University, 1998.

24. Collin, R. E., Field Theory of Guided Waves, IEEE Press2nd Ed., , 1991.

25. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, NY, 1941.

26. Tai, C. T., "On the eigenfunction expansion of dyadic Green’s functions," Proc. IEEE, Vol. 61, 480-481, Apr. 1973.
doi:10.1109/PROC.1973.9075

27. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.


© Copyright 2014 EMW Publishing. All Rights Reserved