PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 231-252

A Detailed Examination of the Finite-Volume, Time-Domain Method for Maxwell's Equations

By J. L. Young, R. O. Nelson, and D. V. Gaitonde

Full Article PDF (437 KB)

Citation:
J. L. Young, R. O. Nelson, and D. V. Gaitonde, "A Detailed Examination of the Finite-Volume, Time-Domain Method for Maxwell's Equations," Progress In Electromagnetics Research, Vol. 28, 231-252, 2000.
doi:10.2528/PIER99100101
http://www.jpier.org/PIER/pier.php?paper=9910011

References:
1. Shang, J. S. and R. M. Fithen, "A comparative study of characteristic-based algorithms for the Maxwell equations," J. Comp. Phys., Vol. 125, 378-394, 1996.
doi:10.1006/jcph.1996.0100

2. Palaniswamy, S., W. F. Hall, and V. Shankar, "Numerical solution to Maxwell’s equations in the time domain on nonuniform grids," Radio Sci., Vol. 31, No. 4, 1996.
doi:10.1029/96RS00783

3. Madsen, N. K. and R. W. Ziolkowski, "A three-dimensional modified finite volume technique for Maxwell’s equations," Electromagnetics, Vol. 10, 147-161, 1990.
doi:10.1080/02726349008908233

4. Anderson, W. K., J. L. Thomas, and B. van Leer, "A comparison of finite volume flux vector splittings for the Euler equations," AIAA 23rd Aerospace Sciences Meeting, AIAA-85-0122, Reno, NV, Jan. 1985.

5. Richtmyer, R. and K. Morton, Difference Methods for Initial-Value Problems, Wiley, New York, 1967.

6. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

7. Gaitonde, D., J. Shang, and J. L. Young, "Practical aspects of higher-order numerical schemes for wave propagation phenomena," Intl. J. Num. Methods in Engr., Vol. 45, 1849-1869.

8. Anderson, D. A., J. C. Tannehill, and R. H. Pletcher, Computational Fluid and Mechanics and Heat Transfer, Taylor & Francis, Bristol, PA, 1984.

9. Ray, S. L., "Grid decoupling in finite element solutions of Maxwell’s equations," IEEE Trans. Ant. Propagat., Vol. 40, No. 4, 1992.
doi:10.1109/8.138847

10. Shang, J. S. and D. Gaitonde, Characteristic-based, timedependent maxwell equation solvers on a general curvilinear fram, Vol. 33, No. 3, 491-498, AIAA Journal, 1995.

11. Al-Khafaji, A. W., Numerical Methods in Engineering Practice, Holt, Rinehart and Winstron, New York, 1986.

12. Gaitonde, D. and J. S. Shang, "Optimized compact-differencebased finite-volume schemes for linear wave phenomena," J. Comp. Phys., Vol. 138, 617-643, 1997.
doi:10.1006/jcph.1997.5836

13. Gottlieb, D. and B. Yang, "Comparisons of staggered and nonstaggered schemes for Maxwell’s equations," 12 Annual Rev. of Progress in Appl. Comp. Electromagn., 1122-1131, Monterrey, CA, 1996.

14. Thomas, L. H., "Elliptic problems in linear difference equations over a network," Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1949.

15. Gustafsson, B., "The convergence rate for difference approximations to mixed initial boundary value problems," Math. Comp., Vol. 29, 396-406, 1975.
doi:10.1090/S0025-5718-1975-0386296-7

16. Zhao, L. and A. C. Cangellaris, "GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids ," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, 1996.
doi:10.1109/22.554601

17. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1986.

18. Fyfe, D. J., "Economical evaluation of Runge-Kutta formulae ," Math. Comput., Vol. 20, 392-398, 1966.
doi:10.1090/S0025-5718-1966-0202317-0

19. Williamson, J. H., "Low-storage Runge-Kutta schemes," J. Comp. Physics., Vol. 35, 48-56, 1980.
doi:10.1016/0021-9991(80)90033-9

20. Shang, J., A perspective of computational electromagnetics in the time domain, 28th AIAA Plasmadynamics & Lasers Conference, AIAA 97-2356, Atlanta, GA, June 1997.


© Copyright 2014 EMW Publishing. All Rights Reserved