PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 275-294

Microwave Imaging of Parallel Perfectly Conducting Cylinders Using Real-Coded Genetic Algorithm Coupled with Newton-Kantorivitch Method

By A. Qing and C. K. Lee

Full Article PDF (423 KB)

Citation:
A. Qing and C. K. Lee, "Microwave Imaging of Parallel Perfectly Conducting Cylinders Using Real-Coded Genetic Algorithm Coupled with Newton-Kantorivitch Method," Progress In Electromagnetics Research, Vol. 28, 275-294, 2000.
doi:10.2528/PIER99111102
http://www.jpier.org/PIER/pier.php?paper=9911112

References:
1. Tijhuis, A. J., Electromagnetic Inverse Profiling: Theory and Numerical Implementation, VNU Science Press, Utrecht, The Netherlands, 1987.

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, van Nostrand Reinhold, New York, 1990.

3. Qing, A., "Electromagnetic scattering and inverse scattering,", Ph.D. Dissertation, Southwest Jiaotiong University, Chengdu, May 1997.

4. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Springer-Verlag, New York, 1998.

5. Chen, L. C., et al., "Improved performance of a subsurface radar target identification system through antenna design," IEEE Trans. Antennas Propagat., Vol. AP-29, 307-311, 1981.

6. Bolomey, J. C., et al., "Microwave diffraction tomography for biomedical applications," IEEE Trans. Micro. Theory Tech., Vol. MTT-30, 1998-2000, 1982.

7. Pichot, C. and L. Chommeloux, "Algorithms for active microwave imaging-biomedical and civil engineering applications," Proc. US-France Conf. On Near Field Microwave Imaging, Atlanta, 1985.

8. Farhat, H. H., "Microwave diversity imaging and automated target identification based on models of neural networks," Proc. IEEE, Vol. 77, 670-681, 1989.

9. Wang, Y. M. and W. C. Chew, "Limited angle inverse scattering problems and their applications for geophysical explorations," Int. J. Imaging Systems Tech., Vol. 2, No. 2, 96-111, 1990.

10. Louis, A. K., "Medical imaging: state of the art and future development," Inverse Problems, Vol. 8, 709-738, 1992.

11. Liu, Q. H., "Nonlinear inversion of electrode-type resistivity measurements," IEEE Trans. Geosci. Remote Sens., GE-32(3), 499-507, 1994.

12. Meaney, P. M., K. D. Pausen, and J. T. Chang, "Near-field microwave imaging of biologically-based materials using a monopole transceiver system," IEEE Trans. Micro. Theory Tech., Vol. MTT-46, No. 1, 31-45, 1998.

13. Golden, K. M., et al., "Inverse electromagnetic scattering models for sea ice," IEEE Trans. Geosci. Remote Sens., GE-36(5), 1675-1704, 1998.

14. Bube, K. P. and R. Burridge, "The one-dimensional inverse problem of reflection seismology," SIAM Rev., Vol. 25, No. 4, 497-559, 1983.

15. Devancy, A. J., "Nonuniqueness in the inverse scattering problem," J. Math. Phys., Vol. 19, No. 7, 1526-1531, 1978.

16. Sarkar, T. K., D. D. Weiner, and V. K. Jain, "Some mathematical considerations in dealing with the inverse problems," IEEE Trans. Antennas Propagat., Vol. AP-29, 373-379, 1981.

17. HoLmann, B. and O. Scherzer, "Factors influencing the illposedness of nonlinear problems," Inverse Problems, Vol. 10, 1277-1297, 1994.

18. Habashy, T. M. and R. Mittra, "On some inverse methods in electromagnetics," J. Electromag. Waves Appli, Vol. 1, No. 1, 25-58, 1987.

19. Lewis, R. M., "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., Vol. AP-17, 308-314, 1969.

20. Bojarski, N. N., "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., Vol. AP-30, 980-989, 1982.

21. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Micro. Theory Tech., Vol. MTT-32, No. 8, 860-874, 1984.

22. Sezginer, A., "Forward and inverse problems in transient electromagnetic fields,", Ph.D. Dissertation, M.I.T., 1985.

23. Burridge, R., "The Gel’fand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equation of inverse scattering theory, regarded in the context of inverse impulse-response problems," Waves Motion, Vol. 2, 305-323, 1980.

24. Balanis, G. N., "The plasma inverse problem," J. Math. Phys., Vol. 13, 1001-1005, 1972.

25. Habashy, T. M., "A generalized Gel’fand-Levitan-Marchenko integral equation," Inverse Problems, Vol. 7, 703-711, 1991.

26. Keller, J. B., "Accuracy and validity of Born and Rytov approximations," J. Opt. Soc. Am., Vol. 59, 1003-1004, 1969.

27. Moghaddam, M. and W. C. Chew, "Nonlinear two-dimensional velocity profile inversion using time-domain data," IEEE Trans. Geosci. Remote Sens., GE-30(1), 147-156, 1992.

28. Qing, A. and L. Jen, "Microwave imaging of dielectric cylinder in layered media," J. Electromag. Waves Appli., Vol. 11, No. 2, 259-269, 1997.

29. Chew, W. C. and Q. H. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT," IEEE Trans. Geosci. Remote Sens., GE-32(4), 878-884, 1994.

30. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity using the distorted Born iterative method," IEEE Trans. Medical Imaging, Vol. MI-9, 218-225, 1990.

31. Roger, A., "Newton-Kantorivitch algorithm applied to electromagnetic inverse problem," IEEE Trans. Antennas Propagat., Vol. AP-29, 232-238, 1981.

32. Chiu, C. C. and W. W. Kiang, "Microwave imaging of multiple conducting cylinders," IEEE Trans. Antennas Propagat., Vol. AP-40, 933-941, 1992.

33. Qing, A. and L. Jen, "A novel method for microwave imaging of dielectric cylinder in layered media," J. Electromag. Waves Appli., Vol. 11, No. 1, 1337-1348, 1997.

34. Colton, D. and P. Monk, "A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region," SIAM J. Appl. Math., Vol. 45, 1039-1053, 1985.

35. Colton, D. and P. Monk, "A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II," SIAM J. Appl. Math., Vol. 46, 506-523, 1986.

36. Hettlich, F., "Two methods for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.

37. Chew, W. C. and G. P. Otto, "Microwave imaging of multiple conducting cylinders using local shape functions," IEEE Micro. Guided Wave Lett., Vol. 2, No. 7, 284-286, 1992.

38. Weedon, W. H. and W. C. Chew, "Time-domain inverse scattering using the local shape function method," Inverse Problems, Vol. 9, 551-564, 1993.

39. Otto, G. P. and W. C. Chew, "Inverse scattering of Hz waves using local shape-function imaging: a T-matrix formulation," Int. J. Imaging Systems Tech., Vol. 5, No. 1, 22-27, 1994.

40. Otto, G. P. and W. C. Chew, "Microwave inverse scatteringlocal shape function imaging for improved resolution of strong scatterers," IEEE Trans. Micro. Theory Tech., Vol. MTT-42, No. 1, 137-141, 1994.

41. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," J. Comput. Appl. Math., Vol. 42, No. 1, 17-35, 1992.

42. Kleinman, R. E. and P. M. van den Berg, "An extended rangemodified technique for profile inversion," Radio Sci., Vol. 28, 877-884, 1993.

43. van den Berg, P. M. and M. van der Horst, "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.

44. Ney, M. M., A. M. Smith, and S. Studchly, "A solution of electromagnetic imaging using pseudoinverse transformation," IEEE Trans. Med. Imaging, Vol. MI-3, 155-162, 1984.

45. Tarantola, A. and B. Valette, "Generalized nonlinear inverse problems solved using the least squares criterion," Rev. Geophy. Space Phy., Vol. 20, 219-232, 1982.

46. Tarantala, A., Inverse Problem Theory, Elsevire Science, New York, 1987.

47. Chiu, C. C. and P. T. Liu, "Image reconstruction of a perfectly conducting cylinder by the genetic algorithm," IEE Proc. Microw., Antennas Propagat., Vol. 143, No. 3, 249-253, 1996.

48. Qing, A. and C. K. Lee, "Shape reconstruction of a perfectly conducting cylinder using real-coded genetic algorithm," Dig. 1999 IEEE AP-S and URSI Symp., 2148-2151, Orlando, 1999.

49. Qing, A., C. K. Lee, and L. Jen, "Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm," J. Electromag. Waves Appli., Vol. 13, No. 8, 1121-1143, 1999.

50. Qing, A. and S. Zhong, "Microwave imaging of two-dimensional perfectly conducting objects using real-coded genetic algorithm," Dig 1998 IEEE AP-S and URSI Symp., 726-729, 1998.

51. Xiao, F. and H. Yabe, "Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm couple with deterministic method," IEICE trans. Electron., Vol. E81-C, No. 12, 1784-1792, 1998.

52. Meng, Z. Q., T. Takenaka, and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm," J. Electromag. Waves Appli., Vol. 13, No. 1, 95-118, 1999.

53. Holland, J. H., Adaptation in Natural and Artificial Systems, Michigan Univ., Ann Arbot, Michigan, 1975.

54. Davis, L., Genetic Algorithm and Simulated Annealing, Pittman, London, 1987.

55. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Weiley, Reading, MA, 1989.

56. Chen, G. L., X. F.Wang, Z. Q. Zhuang, and d D. S.Wang, The Genetic Algorithms and Applications, People’s Telecommunication Press, Beijing, 1996, (in Chinese).

57. Michielssen, E., S. Ranjithan, and R. Mittra, "Optimal multilayer filter design using real coded genetic algorithm," IEE Proc. J, Vol. 139, No. 6, 413-420, 1992.

58. Haupt, R., "Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems," IEEE Trans. Magn., Vol. 31, No. 3, 1932-1935, 1995.

59. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas Propagat. Mag., Vol. 37, No. 2, 8-15, 1995.

60. Weili, D. S. and E. Michiessen, "Genetic algorithm optimization applied to electromagnetics: a review," IEEE Trans. Antennas Propagat., Vol. AP-45, No. 3, 343-353, 1997.

61. Yeo, B. K. and Y. Lu, "Array failure correction with a genetic algorithm," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 5, 823-828, 1999.

62. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.


© Copyright 2014 EMW Publishing. All Rights Reserved